• 제목/요약/키워드: genetic decomposition

검색결과 48건 처리시간 0.021초

다목적 유전알고리듬을 이용한 시스템 분해 기법 (A System Decomposition Technique Using A Multi-Objective Genetic Algorithm)

  • 박형욱;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.499-506
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several sub design structure matrices (DSMs) and processing them in parallel This paper proposes a new method for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multi-objective genetic algorithm and two sample test cases are presented to show the effect of the suggested decomposition method.

다목적 유전알고리듬을 이용한 시스템 분해 기법 (System Decomposition Technique using Multiple Objective Genetic Algorithm)

  • 박형욱;김민수;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.170-175
    • /
    • 2001
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multiple objective genetic algorithm (MOGA), and a sample test case is presented to show the effects of optimizing the sequence with MOGA.

  • PDF

효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발 (Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization)

  • 박형욱;김성찬;김민수;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

On Combining Genetic Algorithm (GA) and Wavelet for High Dimensional Data Reduction

  • Liu, Zhengjun;Wang, Changyao;Zhang, Jixian;Yan, Qin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1272-1274
    • /
    • 2003
  • In this paper, we present a new algorithm for high dimensional data reduction based on wavelet decomposition and Genetic Algorithm (GA). Comparative results show the superiority of our algorithm for dimensionality reduction and accuracy improvement.

  • PDF

유전알고리즘 및 신경회로망을 이용한 다분야통합최적설계문제의 시스템분리기법 연구 (System Decomposition Techniques in Multidisciplinary Design Optimization Problems Using Genetic Algorithms and Neural Networks)

  • 김우석;이종수
    • 한국전산구조공학회논문집
    • /
    • 제12권4호
    • /
    • pp.619-627
    • /
    • 1999
  • 다분야 통합 시스템의 설계문제는 다량의 설계변수와 구속조건으로 구성되며 다수의 공학적 현상으로 연관되어 있다. 다분야 통합 최적설계 문제를 효과적으로 다루기 위해서는 다양한 해석분야의 공학적 설계원리를 동시에 고려하여 균형 있고 유기적인 방법으로 최적의 설계를 결정하는 체계적인 설계자동화기술이 요구된다. 다분야 통합 설계문제를 위한 효율적인 설계방법론으로 분리기반 최적화 기법이 적용되는데 이 방법은 한 단위의 대규모 설계문제를 여러 개의 하부시스템으로 분리하여 독립적으로 최적화를 수행하고 각 하부 시스템으로부터의 설계해 사이의 중재 및 통합화를 거쳐 최종적으로 수렴된 최적설계를 찾는 방법이다. 본 논문에서는 분리기반 최적화기법을 다분야 통합최적 설계문제에 적용하는데 필요한 시스템분리기법을 유전알고리즘 및 다층 역전 파 신경회로망을 이용하여 정립하였다. 시스템분리기법을 검증하기 위해 최근 미국 Boeing사에서 개발중인 고속 민간항공기인 HSCT의 시뮬레이션기반 설계문제를 이용하였다. 대규모 설계시스템의 분리결과는 전체 설계문제의 특성을 파악하기 위한 자료로 활용되며 향후, 분리기반 최적화과정에서 최종적으로 통합된 최적설계를 탐색하는데 필요한 기반구조를 제공한다.

  • PDF

Identification of epistasis in ischemic stroke using multifactor dimensionality reduction and entropy decomposition

  • Park, Jung-Dae;Kim, Youn-Young;Lee, Chae-Young
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.617-622
    • /
    • 2009
  • We investigated the genetic associations of ischemic stroke by identifying epistasis of its heterogeneous subtypes such as small vessel occlusion (SVO) and large artery atherosclerosis (LAA). Epistasis was analyzed with 24 genes in 207 controls and 271 patients (SVO = 110, LAA = 95) using multifactor dimensionality reduction and entropy decomposition. The multifactor dimensionality reduction analysis with any of 1- to 4-locus models showed no significant association with LAA (P > 0.05). The analysis of SVO, however, revealed a significant association in the best 3-locus model with P10L of TGF-$\beta{1}$, C1013T of SPP1, and R485K of F5 (testing balanced accuracy = 63.17%, P < 0.05). Subsequent entropy analysis also revealed that such heterogeneity was present and quite a large entropy was estimated among the 3 loci for SVO (5.43%), but only a relatively small entropy was estimated for LAA (1.81%). This suggests that the synergistic epistasis model might contribute specifically to the pathogenetsis of SVO, which implies a different etiopathogenesis of the ischemic stroke subtypes.

수학적 개념의 발생적 분해의 적용에 대하여 -추상대수학에서의 $Z_n$의 경우- (On the Applications of the Genetic Decomposition of Mathematical Concepts -In the Case of $Z_n$ in Abstract Algebra-)

  • 박혜숙;김서령;김완순
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제44권4호
    • /
    • pp.547-563
    • /
    • 2005
  • There have been many papers reporting that the axiomatic approach in Abstract Algebra is a big obstacle to overcome for the students who are not trained to think in an abstract way. Therefore an instructor must seek for ways to help students grasp mathematical concepts in Abstract Algebra and select the ones suitable for students. Mathematics faculty and students generally consider Abstract Algebra in general and quotient groups in particular to be one of the most troublesome undergraduate subjects. For, an individual's knowledge of the concept of group should include an understanding of various mathematical properties and constructions including groups consisting of undefined elements and a binary operation satisfying the axioms. Even if one begins with a very concrete group, the transition from the group to one of its quotient changes the nature of the elements and forces a student to deal with elements that are undefined. In fact, we also have found through running abstract algebra courses for several years that students have considerable difficulty in understanding the concept of quotient groups. Based on the above observation, we explore and analyze the nature of students' knowledge about $Z_n$ that is the set of congruence classes modulo n. Applying the genetic decomposition method, we propose a model to lead students to achieve the correct concept of $Z_n$.

  • PDF

입도곡선의 정규성분 분해에 의한 대한해협의 대륙붕 퇴적물 연구 (A Study on the Shelf Sediments from Korea Strait through Decomposition of Size Curves into Normal Components)

  • 공영세;김희준;민건홍;이치원
    • 한국수산과학회지
    • /
    • 제29권3호
    • /
    • pp.386-392
    • /
    • 1996
  • A numerical method based on genetic algorithms was introduced to characterize the grain-size distribution more effectively. This technique was proved significant particularly for multimodal size distributions, as was verified for samples from Korea Strait continental shelf. Sediment samples collected from the Korea Strait continental shelf revealed that $96\%$ of the grain-size distributions were multimodal. Therefore, the use of grain-size parameters was not the ideal method. As an alternative method, the decomposition of sue curves into elementary normal component curves was used. Means and standard deviations of 593 decomposed normal components were calculated by a numerical method from 268 size curves of Korea Strait sediments. The mean values of decomposed normal components showed peaks at $1\~3\phi\;and\;7\~9\phi$ size classes. The plot of mean and standard deviation values of the coarse fraction normal components on the map showed a characteristic areal distribution. The characteristic distribution was found to derive from underlying Pleistocene sediment on the basis of sea bottom geologic distribution of the area. The method of decomposition into normal components was found to be more effective than the analysis using traditional grain-size parameters in investigation of multimodal size distribution of Korea Strait shelf sediment.

  • PDF

다분야통합최적설계를 위한 적응분해기법 (An Adaptive Decomposition Technique for Multidisciplinary Design Optimization)

  • 박형욱;최동훈;안병호
    • 한국항공우주학회지
    • /
    • 제31권5호
    • /
    • pp.18-24
    • /
    • 2003
  • 많은 공학 시스템은 여러 개의 해석모듈들이 다양한 데이터의 입출력 관걔로 연관된 형태로 모델링 된다. 이와 같은 복잡한 하나의 시스템을 몇 개의 시스템으로 나누어 해석 및 다분야통합최적설계를 수행하면 계산소요시간 및 병렬처리 측면에서 효율적인 것으로 알려져 있다. 따라서 전체 시스템을 몇 개의 하부시스템으로 분해하는 방법에 대한 연구가 진행되어 왔으나 하부시스템 간의 계산소요시간 분배에 대한 고려가 없이 설계자가 임의로 하부시스템의 크기를 자동으로 결정하도록 하였다. 이를 위하여 적응분해기법은 유전알고리듬을 사용하였고, 기존의 병렬분해기법에서 사용된 염색체에 시스템분해 위치를 나타내는 정보를 추가한 확장염색체를 제안하여 병렬처리에 적합한 시스템분해기법을 구현하였다. 그리고, 항공기 설계 문제와 헬기 설계 문제에 적응분해기법을 적용하여 개발된 알고리듬의 효율성을 보였다.

효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법 (Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization)

  • 박형욱;김성찬;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.