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We investigated the genetic associations of ischemic stroke by 
identifying epistasis of its heterogeneous subtypes such as 
small vessel occlusion (SVO) and large artery atherosclerosis 
(LAA). Epistasis was analyzed with 24 genes in 207 controls 
and 271 patients (SVO = 110, LAA = 95) using multifactor di-
mensionality reduction and entropy decomposition. The multi-
factor dimensionality reduction analysis with any of 1- to 4-lo-
cus models showed no significant association with LAA (P ＞ 
0.05). The analysis of SVO, however, revealed a significant as-
sociation in the best 3-locus model with P10L of TGF-β1, 
C1013T of SPP1, and R485K of F5 (testing balanced accuracy 
= 63.17%, P ＜ 0.05). Subsequent entropy analysis also re-
vealed that such heterogeneity was present and quite a large 
entropy was estimated among the 3 loci for SVO (5.43%), but 
only a relatively small entropy was estimated for LAA (1.81%). 
This suggests that the synergistic epistasis model might contrib-
ute specifically to the pathogenetsis of SVO, which implies a 
different etiopathogenesis of the ischemic stroke subtypes. 
[BMB reports 2009; 42(9): 617-622]

INTRODUCTION

A limited number of ischemic stroke patients have shown a 
Mendelian inheritance pattern caused by a single gene, where-
as many patients have shown complex patterns caused by mul-
tiple genes under various environmental exposures (1). Never-
theless, studies that have examined the genetic dissection of 
the complex ischemic stroke have been quite limited (2). 
Recently, research efforts have been devoted to identify associ-
ations of ischemic stroke with individual candidate genes. For 
example, a DNA sequential association (P10L) with ischemic 
stroke was identified in transforming growth factor-β1 (TGF-β1), 
an important cytokine involved in the process of inflammation 
that could cause plaque rupture, fatty streak, thrombosis and 

atherosclerosis (3-5). Another significant missense polymorphism, 
V66M, was identified in the gene of brain-derived neuro-
trophic factor (BDNF), which plays important roles in the sur-
vival, growth, and differentiation of neurons (2). Significant 
variants in promoter regions were identified in front of klotho 
(6) and thrombomodulin (7). Some intronal sequence variants 
were also significantly associated with the genes of secreted 
phosphoprotein 1 (8, 9) and neuropeptide Y (5), although their 
functions are still unclear.
　By examining only individual genetic associations, it has 
been difficult to understand the genetic architecture of ische-
mic stroke. These questions can only be fully addressed using 
simultaneous analysis with multiple genes, since these meth-
ods can be used to accurately assess the genetic effects of such 
complex traits. The objective of this study was to conduct epis-
tasis analyses using multifactor dimensionality reduction 
(MDR) and entropy decomposition (ED) to better understand 
the genetic associations of ischemic stroke, with a particular 
focus on its subtypes. A nonparametric approach was em-
ployed for epistatic analysis because potentially low power or 
non-estimable statistics might be caused by the large number 
of parameters used in the parametric analytical models. This is 
the first study that examines ischemic stroke using MDR or ED.

RESULTS

Single gene analysis 
Statistically significant associations between ischemic stroke 
and its subtypes were found in the following genes: BDNF, 
LIF, NPY, SPP1, and TGF-β1 (Supplementary Table 1) (http:// 
clee11.cafe24.com/mdred) (P ＜ 0.05). The LIF, NPY, and SPP1 
showed haplotypic association whereas BDNF and TGF-β1 
showed only single locus association. These genes showed 
subtype-specific effects.

Multifactor dimensionality reduction analysis 
MDR analysis with the combined data showed no significant 
interaction effect in any of the one- to four-locus models (Table 1) 
(P ＞ 0.05). The best model was the single locus model with 
the TGF-β1 P10L, showing an average cross-validation con-
sistency (CVC) of 7.57 and an average testing balanced accu-
racy (TBA) of 51.39%. Subsequent analysis with the subtypes 
revealed no significant association with large artery athero-
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No. of loci Best candidate model Avg. CVCa Avg. TBA (%)b

Combined ischemic stroke
1
2
3
4

TGFB1 P10L
LIF T4524G / LIF C3640A
LIF T4524G / LIF C3640A / SPP1 C5891T
TGFB1 P10L / SPP1 C1013T / MTHFR C677T / F5 R485K

7.57
5.63
3.95
4.90

51.39
50.84
51.08
50.92

Large artery atherosclerosis
1
2
3
4

SPP1 C1013T
LIF T4524G    MTHFR C677T
LIF T4524G    MTHFR C677T    IL6R D358A
LIF T4524G    SPP1 C1013T    MTHFR C677T    IL6R D358A

5.04
3.22
7.21
8.04

49.06
46.03
56.35
57.34

Small vessel occlusion
1
2
3
4

TGF-β1  P10L
TGF-β1  P10L  SPP1 C2140T
TGF-β1  P10L  SPP1 C1013T    F5 R485K
TGF-β1  P10L  LIF T4524G    SPP1 C1013T    F5 R485K

9.43
5.35
9.67
4.87

53.32
54.47

  63.17*
52.79

aStands for the average of 100 replicates for cross-validation consistency. bStands for the average of 100 replicates for testing balanced accuracy. 
This was determined by testing the model built with a training set. *P ＜ 0.05

Table 1. Best candidate model selected for ischemic stroke using multifactor dimensionality reduction

Fig. 1. The best multi-locus model for small vessel occlusion showing the genotypes combined with 3 loci and their observed numbers of patients
and controls. The dark gray cell indicates the high risk genotype and the gray cell indicates the low risk genotype, along with the corresponding
distribution of cases (left bar) and of controls (right bar) for each combination. The white cell shows the genotype without observation.

sclerosis (LAA) (Table 1) (P ＞ 0.05). On the other hand, sig-
nificant associations were observed in the analysis with small 
vessel occlusion (SVO) when the 3-locus model was used, 
which included P10L of TGF-β1, C1013T of SPP1, and R485K 
of F5 (Table 1). The permutation test showed a significant aver-
age TBA (63.17%) for the model, and its P values ranged from 
0.028 to 0.029. The statistical significance of the 3-locus mod-
el for SVO was confirmed using a logistic regression analysis 
(Supplementary Table 2) (http://clee11.cafe24.com/mdred). For 
example, the odds ratio estimate for the combined genotype of 
KR (F5 R485K) CT (SPP1 C1013T) LL (TGF-β1 P10L) was 4.55, 
and its corresponding 95% confidence interval (CI) ranged be-
tween 1.15-17.98 (P ＜ 0.05). The odds ratio estimate for all 
the risk genotype groups was 4.48 with a 95% CI ranging be-
tween 2.72-7.36 (P = 1.08 × 10-9).

　Genotypic combinations with the three loci selected in the 
MDR analysis were further analyzed to determine whether 
each combination belonged to the risk or protective genotype 
in regards to the susceptibility to SVO. Assignment to the risk 
or protective genotype was determined by the ratio of the case 
to control number obtained in the analysis (Fig. 1). For exam-
ple, the group with the genotype RR (F5 R485K) CT (SPP1 
C1013T) PP (TGF-β1 P10L) was most likely predisposed to 
SVO and the KR CT LL genotype was least susceptible to SVO.

Entropy decomposition analysis
An entropy-based interaction graph was established using the 
most significant variants in the MDR analysis and in a prelimi-
nary ED analysis (Fig. 2). The polymorphism of T235M in AGT 
was added because of its considerable epistatic contribution 
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Fig. 2. Orange canvas interaction graph for combined ischemic stroke (A), large artery atherosclerosis (B), and small vessel occlusion (C). The
hierarchical interaction graph shows the percentage of entropy removed in the case-control by the main individual locus effect (node) and by 
their pairwise interaction effect (arrow). Solid (dotted) arrows indicate each positive (negative) interaction.

Fig. 3. Entropy decomposition with the three loci, which were selected as the best multi-locus model for small vessel occlusion. (A) combined 
ischemic stroke, (B) large artery atherosclerosis, and (C) small vessel occlusion. This hierarchical interaction graph shows the percentage of entropy
removed in the case-control by the main individual locus effect (node), by their pairwise interaction effect (arrow), and by the 3-locus interaction
effect (circle). Gray arrow and circle indicate positive interactions.
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with other genes included in the graph. For example, individual 
entropy estimates for AGT T235M and SPP1 C5891T were 
small or negligible for LAA (1.77% and 0.04%, respectively), 
but their interaction estimate was considerably larger (3.60%).
　The entropy information in the case-control status also in-
dicated that susceptibility genes by stroke subtypes were hetero-
geneous. For example, LIF T4524G had the largest entropy for 
LAA whereas TGF-β1 P10L had the largest entropy for SVO. 
The heterogeneity was also estimated in the interactions. For 
example, the interaction between SPP1 C5891T and AGT 235 
M had the largest entropy for LAA, and the interaction be-
tween TGF-β1 P10L and SPP1 C2140T had the largest entropy 
for SVO (Fig. 2).
　Further investigation of the 3-locus interaction models also 
revealed differences between LAA and SVO in the interaction 
estimates. For example, the entropy estimate from the 3 loci 
identified as the most significant factors for SVO in the MDR 
analysis (TGF-β1 P10L, SPP1 C1013T, and F5 R485K) was 
quite large (5.43%) relative to the entropy estimate obtained 
for LAA (1.81%) (Fig. 3).

DISCUSSION

A clear understanding of the genetic dissection of ischemic 
stroke has been quite limited because of its variety in clinical 
endpoints as well as its genetic complexity. In the current 
study, we conducted genetic analysis simultaneously with 
multiple genes, focusing on their epistasis, in an attempt to ex-
plain the genetic architecture of this disease. Furthermore, we 
analyzed the main subtypes of the ischemic stroke, LAA and 
SVO. As a result, we found that these subtypes display genetic 
heterogeneity. For example, in the MDR analysis, the 3-locus 
model with TGF-β1 P10L, SPP1 C1013T, and F5 R485K was 
determined to be the best in explaining the susceptibility to 
SVO (P ＜ 0.05). On the other hand, statistical signficance was 
not observed for the other subtype (LAA) of ischemic stroke for 
any multi-locus model (P ＞ 0.05). 
　Further epistatic analysis by ED showed detailed relationships 
among multiple loci. This entropy-based analysis revealed that 
the significance detected for the 3-locus model from the MDR 
analysis might be largely explained by the 3-locus synergistic 
effect (5.43%). This interaction estimate was even larger than 
the sum (4.09%) of the individual effects (2.26%, 0.42%, and 
1.41%) and also larger than the sum (4.21%) of the pair-wise 
interaction effects (1.74%, 1.56%, and 0.91%). The 3-locus in-
teraction effect (1.81%) for LAA was comparable to some 
pair-wise interaction effects (1.86% and 1.59%), which also 
suggests the presence of heterogeneity in the subtypes (Fig. 3).
　The considerable significance found in the 3-locus inter-
action could never be predicted using only the pair-wise en-
tropy information in Fig. 2. Also, the largest pair-wise inter-
action (3.60% between SPP1 C5891T and AGT T235M for 
LAA, and 2.56% between TGF-β1 P10L and SPP1 C2140T for 
SVO) could not be predicted by the entropy information ob-

tained from an individual loci. Even some individual effects 
among the variants were negligible, 0.04% for SPP1 C5891T 
in LAA and 0.09% for SPP1 C2140T in SVO. This implied that 
we were hardly able to predict higher order interaction effects 
with a lower order interaction model.
　In conclusion, the current genetic analysis of ischemic 
stroke provided the first evidence that an epistatic model in-
cluding TGF-β1 P10L, SPP1 C1013T, and F5 R485K is asso-
ciated with the susceptibility to SVO as assessed by MDR and 
ED. However, it is worth noting that the false negative results 
obtained for LAA may be attributable to the small sample size. 
Thus, our findings should be replicated using larger subgroups 
of ischemic stroke patients for practical applications. Network 
analyses (10) and functional studies will also be necessary to 
better understand the underlying mechanism of the epistasis. 

MATERIALS AND METHODS

Subjects
Ischemic stroke patients were recruited from Hallym University 
Hospital. A positive diagnosis was determined by performing 
computed tomography or magnetic resonance imaging scans 
from acute stroke patients within 7 days of onset (4). We in-
cluded a total of 271 patients with ischemic stroke diagnosed 
from 2002 to 2005 and further categorized them into its sub-
types such as SVO (n = 110), LAA (n = 95), cardioembolism 
(CE, n = 20), and the other strokes with rare or undetermined 
etiology, using the TOAST classification system (11). We uti-
lized the classified data sets as well as the combined data set 
in the current study, and the subtype analysis was limited to 
LAA and SVO because of the small sample sizes of the other 
subtypes. Two hundred and seven subjects who served as the 
control group did not have any history of cerebral ischemic 
events and were randomly selected among healthy people 
from routine health checkups including chest X-ray, gastro-
scopy, basic health checkup (blood test, urinalysis, liver func-
tion test, heart function test, and etc), optional cancer exami-
nations, and a routine survey prior to consultation. A detailed 
description and summary of the data has been presented in a 
previous study (4). Written informed consent was obtained 
from all subjects, and the study protocol was approved by an 
Ethical Committee.

Genotyping 
We used genotypic data on 36 sequence variants (35 SNPs 
and 1 Ins/Del polymorphism) from our previous association 
studies (2, 4, 6), and additional genotyping was conducted for 
sequence polymorphisms in coagulation factor V (F5), inter-
leukin 6 receptor (IL6R), and 5,10-methylenetetrahydrofolate 
reductase (MTHFR) genes using the TaqMan polymerase chain 
reaction (PCR) assay (Applied Biosystems, Foster City, CA, 
USA). The three candidate genes selected in the current study 
were first examined for ischemic stroke. Reactions were car-
ried out following the manufacturer’s protocol, and the prod-
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ucts were analyzed by ABI PRISM 7900HT (Applied Biosystems, 
Foster City, CA, USA). Genotyping was conducted with labo-
ratory personnel blind to the case-control status of the samples. 

Single gene analysis
Associations of each individual locus with ischemic stroke or 
their subtypes were tested by odds ratio (OR) statistics. The 
ORs and their 95% confidence intervals were estimated using 
SAS Release 9.1 (SAS Institute, Cary, NC, USA). 

Multifactor dimensionality reduction analysis 
Joint analyses with multiple loci were conducted using MDR, 
which is a data reduction approach for identifying combinations 
of multi-locus genotypes that were associated with a suscepti-
bility to a specific disease (12). This method allowed high-di-
mensional genetic data to be collapsed into a single dimension 
and thus made it possible to infer epistasis in a relatively small 
sample size by grouping genotypes. A cross-validation strategy 
was incorporated with the MDR to estimate the classification 
and prediction error of multifactor models. The current MDR 
under the case-control design was conducted using 10-fold 
cross validation, and the data were randomly and equally parti-
tioned into 10 pieces. We utilized 9 pieces as a training data set 
and 1 piece as a testing data set for each of the 10 possible 
partitions. The training set was used to build a genetic model for 
predicting susceptibility to ischemic stroke, and the testing set 
was used to test the model built by using the training set. 
　In order to identify the best n-locus model, a contingency ta-
ble for the combined genotypes produced with every possible 
n-locus was first created to display the case vs. control status in 
n-dimensional space. The risk level (i.e. a high risk or a low risk) 
of each cell was determined by comparing the case-control ra-
tio estimate to the corresponding total ratio. The total ratios 
were 1.31, 2.18, and 1.88 for the combined ischemic stroke, 
SVO, and LAA, respectively. The possible combinations of n 
loci were evaluated based on minimum classification error. The 
final step was to estimate the TBA of the selected model. This 
procedure was repeated 10 times by 10-fold cross-validation.
　All of the above procedures were replicated 100 times by 
shuffling data sets, and the average estimates of CVC and TBA 
for the replicates were then calculated. The final model among 
the best models with 1-, 2-, …, n-loci was determined with the 
maximum estimates of CVC and TBA. The statistical sig-
nificances of the best candidate models were determined by a 
permutation test. We excluded covariates such as gender, age, 
BMI, hyperlipidemia, smoking, and hypertension in the analy-
sis because our preliminary analysis revealed that the best 
models when these factors were incorporated in the general-
ized MDR (13) did not differ from those without incorporation 
(data not shown). The MDR analysis was conducted using the 
MDR software package available for free at http://www. 
multifactordimensionalityreduction.org.

Entropy decomposition analysis
The interaction among multiple loci associated with a suscepti-
bility to ischemic stroke was further interpreted by displaying a 
graph with entropy-based pair-wise interaction estimates sug-
gested by Jakulin and Bratko (14). This complementary method 
provides distinguishable additive and non additive genetic ef-
fects, which can not be separated in the MDR analysis, and 
thus we were able to detect the epistatic effects and their direc-
tions (synergistic and redundant effects). This graph does not 
provide information on genotypes whereas the MDR analysis 
does. The graph is comprised of a node for each variant and 
line connections between them. The estimate in the node is 
the portion of entropy removed by each variant, and the esti-
mate by the connection is the portion of entropy removed for 
each pair-wise interaction information of the variants. The en-
tropy-based interaction information among multiple variants 
was further extended as follows: 

　I(Li;Lj;Lk;C) = H(Li) ＋ H(Lj) ＋ H(Lk) ＋ H(C) − H(Li,Lj) − 
H(Li,Lk) − H(Lj,Lk) − H(Li,C) − H(Lj,C) − 
H(Lk,C) ＋ H(Li,Lj,Lk) ＋ H(Li,Lj,C) ＋ H(Li,Lk,C) 
＋ H( Lj,Lk,C) − H(Li,Lj,Lk,C)

where I(Li;Lj;Lk;C) is the size of interaction information for 3 se-
quence variants(Li, Lj, and Lk) and one class variable (C), and 
H(•),H(•,•),H(•,•,•), and H(•,•,•,•) are measures of unpredict-
ability as the single entropy of 1 attribute and the joint entropy 
of 2, 3, and 4 attributes, respectively. For example, two-way 
interaction analysis reduces the uncertainty of either of the two 
attributes with the knowledge of the other attribute, and the 
joint entropy is calculated as follows: 

　H(L1,L2) = −∑∑p(l1,l2) logp(l1,l2)

Finally, the entropy removed in the case-control by main in-
dividual locus effect was estimated as I(Li;C)/H(C) and the en-
tropy removed by their pairwise interaction effect was esti-
mated as I(Li;Lj;C)/H(C).
　The direction of the interaction effect was determined by its 
positive (synergistic effect) or negative (redundant effect) value. 
This provided a complementary inference to the MDR study, 
which only determined if an interaction effect existed (12, 14, 
15). We selected 10 variants for their display by the Orange 
Canvas in the current study, and the variant selection was 
based on the best candidate model estimated by MDR analyses. 
The entropy decomposition analysis was conducted using the 
freely available Orange machine learning software at http:// 
www.ailab.si/orange.
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