• 제목/요약/키워드: genetic algorithm operators

검색결과 172건 처리시간 0.023초

유전알고리즘에서 적응적 연산자들의 비교연구 (Comparison of Adaptive Operators in Genetic Algorithms)

  • Yun, Young-Su;Seo, Seoun-Lock
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.189-203
    • /
    • 2002
  • 이 논문에서 우리는 유전알고리즘의 적응적 연산자에 대한 수행도를 비교한다. 이러한 적응적 연산자를 위해서, 유전알고리즘의 교차변이와 돌연변이 연산자가 고려되어 지며, 이 논문에서 개발된 하나의 퍼지로직 제어기와 기존연구에서 사용된 두개의 휴리스틱 기법이 제시되어진다. 이러한 퍼지로직 제어기와 두개의 기존 휴리스틱 기법들은 유전 탐색과정 동안에 그 연산자의 비율들을 적응적으로 조절한다. 이 논문에서 제시된 모든 알고리즘들은 수치예제에서 분석되어 지며, 결론적으로 이들 알고리즘 중에서 최적의 알고리즘이 추천된다.

  • PDF

Multimodal Optimization Based on Global and Local Mutation Operators

  • Jo, Yong-Gun;Lee, Hong-Gi;Sim, Kwee-Bo;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1283-1286
    • /
    • 2005
  • Multimodal optimization is one of the most interesting topics in evolutionary computational discipline. Simple genetic algorithm, a basic and good-performance genetic algorithm, shows bad performance on multimodal problems, taking long generation time to obtain the optimum, converging on the local extrema in early generation. In this paper, we propose a new genetic algorithm with two new genetic mutational operators, i.e. global and local mutation operators, and no genetic crossover. The proposed algorithm is similar to Simple GA and the two genetic operators are as simple as the conventional mutation. They just mutate the genes from left or right end of a chromosome till the randomly selected gene is replaced. In fact, two operators are identical with each other except for the direction where they are applied. Their roles of shaking the population (global searching) and fine tuning (local searching) make the diversity of the individuals being maintained through the entire generation. The proposed algorithm is, therefore, robust and powerful.

  • PDF

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

유전알고리즘을 이용한 발전계통의 보수계획 수립 (Maintenance Scheduling using a Genetic Algorithm with New Crossover Operators)

  • 정정원;김정익
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.545-552
    • /
    • 1999
  • The Maintenance scheduling is one of the mid-term scheduling problems systems. There have been many methods for this problem, but there is no effective way to treat all the generators simultaneously. In this paper, we apply a genetic algorithm(GA) to the maintenance scheduling problem. We proposed new crossover operators(BOX type crossover) to improve searching ability of GA. Satisfactory results are obtained by GA with the proposed corssover operators.

  • PDF

유전알고리즘에 기반한 Job Shop 일정계획 기법 (A Genetic Algorithm-based Scheduling Method for Job Shop Scheduling Problem)

  • 박병주;최형림;김현수
    • 경영과학
    • /
    • 제20권1호
    • /
    • pp.51-64
    • /
    • 2003
  • The JSSP (Job Shop Scheduling Problem) Is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. we design scheduling method based on SGA (Single Genetic Algorithm) and PGA (Parallel Genetic Algorithm). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling method based on genetic algorithm are tested on five standard benchmark JSSPs. The results were compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement at a solution. The superior results indicate the successful Incorporation of generating method of initial population into the genetic operators.

Prufer 수를 이용한 외판원문제의 유전해법 (A Genetic Algorithm for the Traveling Salesman Problem Using Prufer Number)

  • 이재승;신해웅;강맹규
    • 산업경영시스템학회지
    • /
    • 제20권41호
    • /
    • pp.1-14
    • /
    • 1997
  • This study proposes a genetic algorithm using Pr(equation omitted)fer number for the traveling salesman problem(PNGATSP). Nearest neighbor nodes are mixed with randomly selected nodes at the stage of generating initial solutions. Proposed PNGATSP adopts a few ideas which are different from traditional genetic algorithms. For instance, an exponential fitness function and elitism are used and Pr(equation omitted)fer number is used for encoding TSP. Genetic operators are selected by experiments, which make a good solution among four combinations of conventional genetic operators and new genetic operators. For respective combinations, robust set of parameters is determined by the experimental designing approach. The feature of Pr(equation omitted)fer number code for TSP and the search power of GA using Pr(equation omitted)fer number is analysed. The best is a combination of OX(order crossover) and swap, which is superior to the other experimented combinations of genetic operators by 1.0%∼12.8% deviation.

  • PDF

최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근 (Optimum redundancy design for maximum system reliability: A genetic algorithm approach)

  • 김재윤;신경석
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계 (Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms)

  • 박춘욱;여백유;강문영
    • 한국공간구조학회논문집
    • /
    • 제1권1호
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

도로선형최적화를 위한 유전자 연산자의 적용 (Incorporating Genetic Operators into Optimizing Highway Alignments)

  • 김응철
    • 대한교통학회지
    • /
    • 제22권2호
    • /
    • pp.43-54
    • /
    • 2004
  • 본 연구에서는 인공지능(Artificial Intelligence)방법 중의 하나인 유전자 알고리즘(Genetic Algorithm)을 도로선형최적화 모형개발의 탐색엔진으로 활용하기 위한 핵심도구인 유전자 연산자(Genetic Operator)의 개발과 적용과정을 통해 그 특징과 유용성을 제시하였다. 균일돌연변이 연산자, 직선돌연변이 연산자. 비균일 돌연변이 연산자, 전체 비균일 돌연변이 연산자 등 4개의 돌연변이 연산자가 탐색영역(Search space)의 가능한 모든 부분을 탐험(Exploration)하기 위해 적용되었으며, 단순교차 연산자, 두 개의 점을 이용한 교차 연산자, 산술교차 연산자, 학습교차 연산자 등 4개의 교차 연산자가 노선대안의 우수한 유전형질을 다음세대에 효과적으로 전달(Exploitation)하기 위해 시험되었다. 사례연구와 민감도 분석과정을 통해 유전자 알고리즘 및 개발 적용된 8개 유전자 연산자의 도로선형최적화과정 도입이 우수한 노선대안을 빠르고 효과적으로 탐색함을 알 수 있었으며, 돌연변이 연산자와 교차 연산자의 효과적 조합이 상호보완기능을 통해 탐색능력의 향상에 큰 영향을 끼치는 것으로 파악되었다. 또한, 개발 적용된 연산자 이외에도 새로운 연산자의 개발 가능성이 무한하며, 이는 도로선형최적화에 유전자 알고리즘의 적용이 타당함을 반증함도 주목할 만하다.

유전 알고리즘의 조기수렴 저감을 위한 연산자 소인방법 연구 (On Sweeping Operators for Reducing Premature Convergence of Genetic Algorithms)

  • 이홍규
    • 제어로봇시스템학회논문지
    • /
    • 제17권12호
    • /
    • pp.1210-1218
    • /
    • 2011
  • GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.