• 제목/요약/키워드: genetic algorithm hybrid method

검색결과 220건 처리시간 0.021초

Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm

  • Li, Shouju;Shangguan, Zichang;Duan, Hongxia;Liu, Yingxi;Luan, Maotian
    • Geomechanics and Engineering
    • /
    • 제1권1호
    • /
    • pp.85-96
    • /
    • 2009
  • The radius and coordinate of sliding circle are taken as searching variables in slope stability analysis. Genetic algorithm is applied for searching for critical factor of safety. In order to search for critical factor of safety in slope stability analysis efficiently and in a robust manner, some improvements for simple genetic algorithm are proposed. Taking the advantages of efficiency of neighbor-search of the simulated annealing and the robustness of genetic algorithm, a hybrid optimization method is presented. The numerical computation shows that the procedure can determine the minimal factor of safety and be applied to slopes with any geometry, layering, pore pressure and external load distribution. The comparisons demonstrate that the genetic algorithm provides a same solution when compared with elasto-plastic finite element program.

역복사경계해석을 위한 다양한 조정법 비교 (Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis)

  • 김기완;신병선;길정기;여권구;백승욱
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.903-910
    • /
    • 2005
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and finite-difference Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach that adopts the hybrid genetic algorithm as an initial value selector and uses the finite-difference Newton method as an optimization procedure.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

FDMA 무선통신 네트워크에서 채널할당을 위한 HGLS 알고리듬 (Hybrid Genetic and Local Search (HGLS) Algorithm for Channel Assignment in FDMA Wireless Communication Network)

  • 김성수;민승기
    • 산업공학
    • /
    • 제18권4호
    • /
    • pp.504-511
    • /
    • 2005
  • The NP-hard channel assignment problem becomes more and more important to use channels as efficiently as possible because there is a rapidly growing demand and the number of usable channel is very limited. The hybrid genetic and local search (HGLS) method in this paper is a hybrid method of genetic algorithm with no interference channel assignment (NICA) in clustering stage for diversified search and local search in tuning stage when the step of search is near convergence for minimizing blocking calls. The new representation of solution is also proposed for effective search and computation for channel assignment.

인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구 (Crack Identification Using Hybrid Neuro-Genetic Technique)

  • 서명원;심문보
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

순차적 선형화 기법과 유전자 알고리즘을 접속한 하이브리드형 최적화 알고리즘 (Hybrid Optimization Algorithm based on the Interface of a Sequential Linear Approximation Method and a Genetic Algorithm)

  • 이경호;이규열
    • 대한조선학회논문집
    • /
    • 제34권1호
    • /
    • pp.93-101
    • /
    • 1997
  • 본 연구에서는 전통적인 비선형 최적화 기법의 문제점을 극복하기 위하여 유전자알고리즘과 지식베이스의 통합을 통한 새로운 개념의 최적화 기법을 개발하였다. 여기에서는 제한조건이 있는 비선형 최적화 문제를 해결하기 위해 사용되는 전통적인 순차적 선형화 방법과 새로운 유전자 알고리즘의 장단점을 서로 보완한 하이브리드형 최적화 기법을 개발하였다. 여기에 지식베이스를 통한 최적화 지원 기법 및 최적화 모델의 자동생성 모듈을 개발하여 최적화 모텔의 성능을 한층 개선할 수 있었다. 개발된 최적화 기법의 검증을 위하여 수학적 비선형 모델을 이용한 여러가지 기법의 비교 검토를 수행하였다.

  • PDF

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.