• Title/Summary/Keyword: genetic algorithm & artificial neural network

Search Result 138, Processing Time 0.03 seconds

A Study on the Multi-Level Artificial Neural Networks Using Genetic Algorithm for Preliminary Structural Design (예비 구조설계를 위한 유전알고리즘을 이용한 다단계 인공신경망에 관한 연구)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.443-452
    • /
    • 2004
  • Recently, the Artificial Neural Network(ANN) which can organize complex non-linear problems by effectively applying the parallel computational model that is similar to the human brain, was adopted in the wide department of technology and resulted in many successful applications. In this study, a more appropriate formal method is suggested for the preliminary structural design stage controlled merely by the designer's experience and intuition. To do so, this study proposes a multi-level ANN according to the general progressive structural design procedure, using Back-Propagation Algorithm (BP) and Genetic Algorithm (GA) for the ANN learning. The preliminary structural design of cable-stayed bridges was applied to illustrate the applicability of the study formulated as stated above, and the results of two different learning methods were compared.

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

An Intrusion Detection System based on the Artificial Neural Network for Real Time Detection (실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템)

  • Kim, Tae Hee;Kang, Seung Ho
    • Convergence Security Journal
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • As the cyber-attacks through the networks advance, it is difficult for the intrusion detection system based on the simple rules to detect the novel type of attacks such as Advanced Persistent Threat(APT) attack. At present, many types of research have been focused on the application of machine learning techniques to the intrusion detection system in order to detect previously unknown attacks. In the case of using the machine learning techniques, the performance of the intrusion detection system largely depends on the feature set which is used as an input to the system. Generally, more features increase the accuracy of the intrusion detection system whereas they cause a problem when fast responses are required owing to their large elapsed time. In this paper, we present a network intrusion detection system based on artificial neural network, which adopts a multi-objective genetic algorithm to satisfy the both requirements: accuracy, and fast response. The comparison between the proposing approach and previously proposed other approaches is conducted against NSL_KDD data set for the evaluation of the performance of the proposing approach.

Pan evaporation modeling using deep learning theory (Deep learning 이론을 이용한 증발접시 증발량 모형화)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.392-395
    • /
    • 2017
  • 본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.

  • PDF

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach

  • Shokouhi, Seyed Kazem Sadat;Dolatshah, Azam;Ghobakhloo, Ehsan
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.417-438
    • /
    • 2013
  • This study was concerned on the application of a hybrid approach for analyzing the buried pipelines deformations subjected to earthquakes. Nonlinear time-history analysis of Finite Element (FE) model of buried pipelines, which was modeled using laboratory data, has been performed via selected earthquakes. In order to verify the FE model with experiments, a statistical test was done which demonstrated a good conformity. Then, the FE model was developed and the optimum intersection angle of pipeline and fault was obtained via genetic algorithm. Transient seismic strain of buried pipeline in the optimum intersection angle of pipeline and fault was investigated considering the pipes diameter, the distance of pipes from fault, the soil friction angles and seismic response duration of buried pipelines. Also, a two-layer perceptron Artificial Neural Network (ANN) was trained using results of FE model, and a nonlinear relationship was obtained to predict the bending strain of buried pipelines based on the pipes diameter, intersection angles of the pipelines and fault, the soil friction angles, distance of pipes from the fault, and seismic response duration; whereas it contains a wide range of initial input data without any requirement to laboratory measurements.

Optimum Macro-Siting for Offshore Wind Farm Using RDAPS Sea Wind Model (RDAPS Sea Wind Model을 이용한 해상풍력발전단지 최적 Macro-Siting)

  • Lee, K.H.;Jun, S.O.;Park, K.H.;Lee, D.H.;Park, Jong-Po
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.286-290
    • /
    • 2011
  • This paper introduces the optimum macro-siting of a potential site for an offshore wind farm around Jeju Island using the RDAPS sea wind model. The statistical model was developed by analyzing the sea wind data from RDAPS model, and the meso-scale digital wind map was prepared. To develop the high resolution spatial calibration model, Artificial Neural Network(ANN) models were used to construct the wind and bathymetric maps. Accuracy and consistency of wind/bathymetric spatial calibration models were obtained using analysis of variance. The optimization problem was defined to maximize the energy density satisfying the criteria of maximum water depth and maximum distance from the coastline. The candidate site was selected through Genetic Algorithm(GA). From the results, it is possible to predict roughly a candidate site location for the installation of the offshore wind jam, and to evaluate the wind resources of the proposed site.

  • PDF

A Study of Process Parameters Optimization Using Genetic Algorithm for Nd:YAG Laser Welding of AA5182 Aluminum Alloy Sheet (AA5182 알루미늄 판재의 Nd:YAG 레이저 용접에서 유전 알고리즘을 이용한 공정변수 최적화에 대한 연구)

  • Park, Young-Whan;Rhee, Se-Hun;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1322-1327
    • /
    • 2007
  • Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.

  • PDF

A Design of Artifical Neural Network Power System Stabilizer Using Adaptive Evolutionary Algorithm (적응진화알고리즘을 이용한 신경망-전력계통안정화장치의 설계)

  • Park, Je-Young;Choi, Jae-Gon;Hwang, Gi-Hyun;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1177-1179
    • /
    • 1999
  • This paper presents a design of artificial neural network power system stabilizer(ANNPSS) using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses both a genetic algorithm(GA) and an evolution strategy(ES), useing the merits of two different evolutionary computations. ANNPSS shows better control performances than conventional power system stabilizer(CPSS) in three-phase fault with heavy load which is used when tuning ANNPSS. To show the robustness of the proposed ANNPSS, it is applied to damp the low frequency oscillation caused by disturbances such as three-phase fault with normal and light load. the proposed ANNPSS shows better robustness than CPSS.

  • PDF