• Title/Summary/Keyword: genetic Neural Network

Search Result 532, Processing Time 0.026 seconds

Improvement of Thickness Accuracy in Hot-Rolling Mill Using Neural Network and Genetic Algorithm (신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상)

  • 손준식;김일수;최승갑;이덕만
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • In the face of global competition, the requirements fer the continuously increasing productivity, flexibility and quality (dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. To achieve this objectives, a new loaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

  • PDF

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Genetic Optimization of Fuzzy C-Means Clustering-Based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.466-472
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based fuzzy neural networks (FCM-FNN) and the optimization of the network is carried out by means of hierarchal fair competition-based parallel genetic algorithm (HFCPGA). FCM-FNN is the extended architecture of Radial Basis Function Neural Network (RBFNN). FCM algorithm is used to determine centers and widths of RBFs. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM-FNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Since the performance of FCM-FNN is affected by some parameters of FCM-FNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the HFCPGA which is a kind of multipopulation-based parallel genetic algorithms(PGA) is exploited to carry out the structural optimization of FCM-FNN. Moreover the HFCPGA is taken into consideration to avoid a premature convergence related to the optimization problems. The proposed model is demonstrated with the use of two representative numerical examples.

Parameter Estimation of Storage Function Method using Metamodel (메타모델을 이용한 저류함수법의 매개변수추정)

  • Chung, Gun-Hui;Oh, Jin-A;Kim, Tae-Gyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.81-87
    • /
    • 2010
  • In order to calculate the accurate runoff from a basin, nonlinearity in the relationship between rainfall and runoff has to be considered. Many runoff calculation models assume the linearity in the relationship or are too complicated to be analyzed. Therefore, the storage function method has been used in the prediction of flood because of the simplicity of the model. The storage function method has five parameters with related to the basin and rainfall characteristics which can be estimated by the empirical trial and error method. To optimize these parameters, regression method or optimization techniques such as genetic algorithm have been used, however, it is not easy to optimize them because of the complexity of the method. In this study, the metamodel is proposed to estimate those model parameters. The metamodel is the combination of artificial neural network and genetic algorithm. The model is consisted of two stages. In the first stage, an artificial neural network is constructed using the given rainfall-runoff relationship. In the second stage, the parameters of the storage function method are estimated using genetic algorithm and the trained artificial neural network. The proposed metamodel is applied in the Peong Chang River basin and the results are presented.

Optimum Bar-feeder Support Positions of a Miniature High Speed Spindle System by Genetic Algorithm (유전 알고리듬을 이용한 소형 고속스핀들 시스템의 바-피더 지지부의 위치 최적선정)

  • Lee, Jae-Hoon;Kim, Mu-Su;Park, Seong-Hun;Kang, Jae-Keun;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.99-107
    • /
    • 2009
  • Since a long work piece influences the natural frequency of the entire system with a miniature high speed spindle, a bar-feeder is used for a long work piece to improve the vibration characteristics of a spindle system. Therefore, it is very important to design optimally support positions between a bar-feeder and a long work piece for a miniature high speed spindle system. The goal of the current paper is to present an optimization method for the design of support positions between a bar-feeder and a long work piece. This optimization method is effectively composed of the method of design of experiment (DOE), the artificial neural network (ANN) and the genetic algorithm (GA). First, finite element models which include a high speed spindle, a long work piece and the support conditions of a bar-feeder were generated from the orthogonal array of the DOE method, and then the results of natural vibration analysis using FEM were provided for the learning inputs of the neural network. Finally, the design of bar-feeder support positions was optimized by the genetic algorithm method using the neural network approximations.

Application of a Hybrid System of Probabilistic Neural Networks and Artificial Bee Colony Algorithm for Prediction of Brand Share in the Market

  • Shahrabi, Jamal;Khameneh, Sara Mottaghi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.324-334
    • /
    • 2016
  • Manufacturers and retailers are interested in how prices, promotions, discounts and other marketing variables can influence the sales and shares of the products that they produce or sell. Therefore, many models have been developed to predict the brand share. Since the customer choice models are usually used to predict the market share, here we use hybrid model of Probabilistic Neural Network and Artificial Bee colony Algorithm (PNN-ABC) that we have introduced to model consumer choice to predict brand share. The evaluation process is carried out using the same data set that we have used for modeling individual consumer choices in a retail coffee market. Then, to show good performance of this model we compare it with Artificial Neural Network with one hidden layer, Artificial Neural Network with two hidden layer, Artificial Neural Network trained with genetic algorithms (ANN-GA), and Probabilistic Neural Network. The evaluated results show that the offered model is outperforms better than other previous models, so it can be use as an effective tool for modeling consumer choice and predicting market share.

Velocity Control of DC Motor using Neural Network and Evolutionary Algorithm (신경망과 진화알고리즘을 이용한 DC 모터 속도 제어)

  • Hwang, G.H.;Mun, K.J.;Yang, S.O.;Lee, H.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.359-361
    • /
    • 1994
  • This paper propose a Neural - GA-ES DC motor speed controller. The purpose is to achieve accurate trajectory control of the motor speed. A feedforward neural network structure is used for the controller. Genetic algorithm and evolution strategy is used for learning controller. Simulations are performed to demonstrate the effectiveness of proposed genetic algorithm and evolution strategy with neural structure.

  • PDF

Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network (GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Direct-band spread system for neural network with interference signal control (직접 대역 확산 시스템에서 신경망을 이용한 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1372-1377
    • /
    • 2013
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

Review on Genetic Algorithms for Pattern Recognition (패턴 인식을 위한 유전 알고리즘의 개관)

  • Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • In pattern recognition field, there are many optimization problems having exponential search spaces. To solve of sequential search algorithms seeking sub-optimal solutions have been used. The algorithms have limitations of stopping at local optimums. Recently lots of researches attempt to solve the problems using genetic algorithms. This paper explains the huge search spaces of typical problems such as feature selection, classifier ensemble selection, neural network pruning, and clustering, and it reviews the genetic algorithms for solving them. Additionally we present several subjects worthy of noting as future researches.