• 제목/요약/키워드: generator rotor

검색결과 509건 처리시간 0.029초

Rotor Loss Analysis of Permanent Magnet High-Speed Machine According to Magnetization Pattern

  • Cho, Han-Wook;Jang, Seok-Myeong;Lee, Sung-Ho;Yang, Hyun-Sup;Jeong, Yeon-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권3호
    • /
    • pp.103-107
    • /
    • 2004
  • Recently, greater attention has been paid to the high-speed generator for its many merits, such as ease of installation, high efficiency and high power density. However, due to their high fundamental frequency, careful consideration needs to be given to both electromagnetic and mechanical design issues. This paper deals with the comparison of two types of permanent magnet high-speed machines. Specifically, the effect of the permanent magnet magnetization pattern on the rotor losses is investigated. On the basis of analytical field analysis and the 2-D finite element method, this paper predicts the flux harmonics and rotor losses under the no-load condition. It is shown that the Halbach magnetization is superior to parallel magnetization in terms of producing rotor losses.

Dual-Halbach Array Permanent Magnet Tubular Generator for Free-Piston Generator

  • Beigi, Hassan Moradi Cheshmeh;Akbari, Sohrab
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.405-412
    • /
    • 2015
  • In this study, we describe the effects of changing the magnet shape of permanent magnets (PMs) in a rotor Halbach-array PM generator for reciprocating free piston generator applications. More specifically, the rectangular-shaped magnets were replaced by the trapezoidal-shaped magnets. The initial design, an analytical magnetic field solution of rectangular shaped magnets, is presented and air-gap magnetic flux density and thrust force were estimated. The results were compared to the finite element analysis (FEA) showing excellent agreement. Using FEA, the effect of the shape of the magnets on the flux density and thrust force waveforms is analyzed. Moreover, the proportion of the Halbach array in the machine was optimized by the means of a parametric search. The results obtained from the analytical calculations and FEA were validated by comparing to those of Radial-array PM generator.

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.273-281
    • /
    • 2014
  • This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.

소형 직접구동형 풍력발전기의 최대 출력제어 (Maximum Power Control of Small Direct-Drive Wind Power Generator)

  • 김철호;이우석;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.875-877
    • /
    • 2004
  • Research related to renewable energy is urgently required to cope with the depletion of fossil fuel and the environmental pollution. This paper deals with maximum power control of 1kW rating wind power generator. To implement direct-drive generator, axial flux permanent magnet generator is adopted to test the converter. The blade is attached to the surface of outer rotor disk. Generally wind power generator is operated under the rated wind speed. To capture maximum power at my given wind speed, the coordination of generator and converter is essential. Buck/Boost converter is designed to charge 24V battery and under the low wind speed it operates as boost converter.

  • PDF

터보 제너레이터의 시동기 제어에 관한 연구 (A Study on the Starter Control of the Turbo Generator)

  • 박승엽;노민식
    • 제어로봇시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.

회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화 (Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain)

  • 김연희;강용철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A fuzzy logic Controller design for Maximum Power Extraction of variable speed Wind Energy Conversion System)

  • 김재곤;김병륜;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2307-2309
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

  • PDF

영구자석형 동기발전기의 회전자 위치검출 센서의 옵셋 검출에 관한 연구 (A Study on a Rotor Position Sensor Offset Detection Method in a Permanent Magnet Synchronous Generator)

  • 박규성;신성환;이호광;윤영득;이근호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.914-921
    • /
    • 2014
  • In this paper, an algorithm is suggested to detect an offset angle of the absolute rotor position sensor after the initial assembly of a PMSG. Unlike previous studies in a stationary state, this one is not designed to detect an electrical angle but rather the absolute position of the rotor is detected while operating the generator. Also,a position sensor, current sensors and voltage sensor were used to ensure reliability. This technique completes the detection of the sensor offset in two steps. In the first step, a zero-crossing of the EMF is measured using a voltage sensor to detect the electrical angle offset when the alternator is actuated by the engine. In the second step, a high frequency current is injected along the d-axis on-line during the control of the generation, eventually to obtain the inductance using a DFT (Discrete Fourier Transform), and then to ultimately extract the final electrical angle offset through the comparison of the inductance magnitude. The suggested algorithm was validated with PSIM simulation and, furthermore, was tested with actual experiments on a dynamometer.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

PMSG 풍력발전 시스템의 출력 제어 및 주파수 제어 연구 (A Study on Frequency Control and Active Power Control of Wind Turbine Generation System for PMSG)

  • 이광수;김문겸
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.597-607
    • /
    • 2014
  • This paper proposes active power control and frequency support control schemes of wind turbine generation system by using modified Maximum Power Point Tracking(MPPT) of Permanent Magnet Synchronous Generator(PMSG). Most wind turbine generation system is completely decoupled from the power system and power output control with pitch control. According to the frequency deviation, however, MPPT control can not contribute to the frequency change of the power system due to its active power output control. For solving this, the de-loaded(DL) control scheme is constructed for the frequency support control, which is based on applying the active power output control in the rotor speed control of PMSG. The rotor speed by used in the proposed DL control scheme is increased more than the optimal rotor speed of MPPT, and then this speed improvement increases the saved kinetic energy(KE). In order to show the effectiveness of the proposed control scheme, the case studies have been performed using the PSCAD/EMTDC. The results show that the proposed active power output control scheme(DL control and KE discharge control) works properly and the frequency response ability of the power system can be also improved with the frequency support of wind farm.