• Title/Summary/Keyword: generative AI model

Search Result 118, Processing Time 0.032 seconds

A Study of how LLM-based generative AI response data quality affects impact on job satisfaction (LLM 기반의 생성형 AI 응답 데이터 품질이 업무 활용 만족도에 미치는 영향에 관한 연구)

  • Lee Seung Hwan;Hyun Ji Eun;Gim Gwang Yong
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.117-129
    • /
    • 2024
  • With the announcement of Transformer, a new type of architecture, in 2017, there have been many changes in language models. In particular, the development of LLM (Large language model) has enabled generative AI services such as search and chatbot to be utilized in various business areas. However, security issues such as personal information leakage and reliability issues such as hallucination, which generates false information, have raised concerns about the effectiveness of these services. In this study, we aimed to analyze the factors that are increasing the frequency of using generative AI in the workplace despite these concerns. To this end, we derived eight factors that affect the quality of LLM-based generative AI response data and empirically analyzed the impact of these factors on job satisfaction using a valid sample of 195 respondents. The results showed that expertise, accessibility, diversity, and convenience had a significant impact on intention to continue using, security, stability, and reliability had a partially significant impact, and completeness had a negative impact. The purpose of this study is to academically investigate how customer perception of response data quality affects business utilization satisfaction and to provide meaningful practical implications for customer-centered services.

A study on Korean multi-turn response generation using generative and retrieval model (생성 모델과 검색 모델을 이용한 한국어 멀티턴 응답 생성 연구)

  • Lee, Hodong;Lee, Jongmin;Seo, Jaehyung;Jang, Yoonna;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Recent deep learning-based research shows excellent performance in most natural language processing (NLP) fields with pre-trained language models. In particular, the auto-encoder-based language model proves its excellent performance and usefulness in various fields of Korean language understanding. However, the decoder-based Korean generative model even suffers from generating simple sentences. Also, there is few detailed research and data for the field of conversation where generative models are most commonly utilized. Therefore, this paper constructs multi-turn dialogue data for a Korean generative model. In addition, we compare and analyze the performance by improving the dialogue ability of the generative model through transfer learning. In addition, we propose a method of supplementing the insufficient dialogue generation ability of the model by extracting recommended response candidates from external knowledge information through a retrival model.

An Exploratory Study on the Trustworthiness Analysis of Generative AI (생성형 AI의 신뢰도에 대한 탐색적 연구)

  • Soyon Kim;Ji Yeon Cho;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.79-90
    • /
    • 2024
  • This study focused on user trust in ChatGPT, a generative AI technology, and explored the factors that affect usage status and intention to continue using, and whether the influence of trust varies depending on the purpose. For this purpose, the survey was conducted targeting people in their 20s and 30s who use ChatGPT the most. The statistical analysis deploying IBM SPSS 27 and SmartPLS 4.0. A structural equation model was formulated on the foundation of Bhattacherjee's Expectation-Confirmation Model (ECM), employing path analysis and Multi-Group Analysis (MGA) for hypothesis validation. The main findings are as follows: Firstly, ChatGPT is mainly used for specific needs or objectives rather than as a daily tool. The majority of users are cognizant of its hallucination effects; however, this did not hinder its use. Secondly, the hypothesis testing indicated that independent variables such as expectation- confirmation, perceived usefulness, and user satisfaction all exert a positive influence on the dependent variable, the intention for continuance intention. Thirdly, the influence of trust varied depending on the user's purpose in utilizing ChatGPT. trust was significant when ChatGPT is used for information retrieval but not for creative purposes. This study will be used to solve reliability problems in the process of introducing generative AI in society and companies in the future and to establish policies and derive improvement measures for successful employment.

A Study on Generative AI-Based Feedback Techniques for Tutoring Beginners' Error Codes on Online Judge Platforms

  • Juyeon Lee;Seung-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.191-200
    • /
    • 2024
  • The rapid advancement of computer technology and artificial intelligence has significantly impacted software education in Korea. Consequently, the 2022 revised curriculum demands personalized education. However, implementing personalized education in schools is challenging. This study aims to facilitate personalized education by utilizing incorrect codes and error information submitted by beginners to construct prompts. And the difference in the frequency of correct feedback generated by the generative AI model and the prompts was examined. The results indicated that providing appropriate error information in the prompts yields better performance than relying solely on the excellence of the generative AI model itself. Through this research, we hope to establish a foundation for the realization of personalized education in programming education in Korea.

Research on AI Painting Generation Technology Based on the [Stable Diffusion]

  • Chenghao Wang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.90-95
    • /
    • 2023
  • With the rapid development of deep learning and artificial intelligence, generative models have achieved remarkable success in the field of image generation. By combining the stable diffusion method with Web UI technology, a novel solution is provided for the application of AI painting generation. The application prospects of this technology are very broad and can be applied to multiple fields, such as digital art, concept design, game development, and more. Furthermore, the platform based on Web UI facilitates user operations, making the technology more easily applicable to practical scenarios. This paper introduces the basic principles of Stable Diffusion Web UI technology. This technique utilizes the stability of diffusion processes to improve the output quality of generative models. By gradually introducing noise during the generation process, the model can generate smoother and more coherent images. Additionally, the analysis of different model types and applications within Stable Diffusion Web UI provides creators with a more comprehensive understanding, offering valuable insights for fields such as artistic creation and design.

Software Education Class Model using Generative AI - Focusing on ChatGPT (생성형 AI를 활용한 소프트웨어교육 수업모델 연구 - ChatGPT를 중심으로)

  • Myung-suk Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.3_spc
    • /
    • pp.275-282
    • /
    • 2024
  • This study studied a teaching model for software education using generative AI. The purpose of the study is to use ChatGPT as an instructor's assistant in programming classes for non-major students by using ChatGPT in software education. In addition, we designed ChatGPT to enable individual learning for learners and provide immediate feedback when students need it. The research method was conducted using ChatGPT as an assistant for non-computer majors taking a liberal arts Python class. In addition, we confirmed whether ChatGPT has the potential as an assistant in programming education for non-major students. Students actively used ChatGPT for writing assignments, correcting errors, writing coding, and acquiring knowledge, and confirmed various advantages, such as being able to focus on understanding the program rather than spending a lot of time resolving errors. We were able to see the potential for ChatGPT to increase students' learning efficiency, and we were able to see that more research is needed on its use in education. In the future, research will be conducted on the development, supplementation, and evaluation methods of educational models using ChatGPT.

A Study on the Development of a Chatbot Using Generative AI to Provide Diets for Diabetic Patients

  • Ha-eun LEE;Jun Woo CHOI;Sung Lyul PARK;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.25-31
    • /
    • 2024
  • The purpose of this study is to develop a sophisticated web-based artificial intelligence chatbot system designed to provide personalized dietary service for diabetic patients. According to a 2022 study, the prevalence of diabetes among individuals over 30 years old was 15.6% in 2020, identifying it as a significant societal issue with an increasing patient population. This study uses generative AI algorithms to tailor dietary recommendations for the elderly and various social classes, contributing to the maintenance of healthy eating habits and disease prevention. Through meticulous fine-tuning, the learning loss of the AI model was significantly reduced, nearing zero, demonstrating the chatbot's potential to offer precise dietary suggestions based on calorie intake and seasonal variations. As this technology adapts to diverse health conditions, ongoing research is crucial to enhance the accessibility of dietary information for the elderly, thereby promoting healthy eating practices and supporting disease prevention.

Non-pneumatic Tire Design System based on Generative Adversarial Networks (적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템)

  • JuYong Seong;Hyunjun Lee;Sungchul Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.34-46
    • /
    • 2023
  • The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

  • PDF

A Study on Impact of Deep Learning on Korean Economic Growth Factor

  • Dong Hwa Kim;Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.90-99
    • /
    • 2023
  • This paper deals with studying strategy about impact of deep learning (DL) on the factor of Korean economic growth. To study classification of impact factors of Korean economic growth, we suggest dynamic equation of microeconomy and study methods on economic growth impact of deep learning. Next step is to suggest DL model to dynamic equation with Korean economy data with growth related factors to classify what factor is import and dominant factors to build policy and education. DL gives an influence in many areas because it can be implemented with ease as just normal editing works and speak including code development by using huge data. Currently, young generations will take a big impact on their job selection because generative AI can do well as much as humans can do it everywhere. Therefore, policy and education methods should be rearranged as new paradigm. However, government and officers do not understand well how it is serious in policy and education. This paper provides method of policy and education for AI education including generative AI through analysing many papers and reports, and experience.

University Faculty's Perspectives on Implementing ChatGPT in their Teaching

  • Pyong Ho Kim;Ji Won Yoon;Hye Yoon Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.56-61
    • /
    • 2023
  • The present study explored a comprehensive investigation of university professors' perspectives on the implementation of ChatGPT - an artificial intelligence-powered language model - in their teaching practices. A diverse group of 30 university professors responded to a questionnaire about the level of their interest in implementing the tool, willingness to apply it, and concerns they have regarding the intervention of ChatGPT in higher education setting. The results showed that the participants are highly interested in employing the tool into their teaching practice, and find that the students are likely to benefit from using ChatGPT in classroom settings. On the other hand, they displayed concerns regarding high depandency on data, privacy-related issues, lack of supports required, and technical contraints. In today's fast-paced society, educators are urged to mindfully apply this inevitable generative AI means with thoughtfulness and ethical considerations to and for their learners. Relevant topics are discussed to successfully intervene AI tools in teaching practices in higher education.