• 제목/요약/키워드: generative AI

검색결과 316건 처리시간 0.027초

생성형 인공지능 모델의 개인정보 라이프 사이클에 따른 국내 개인정보 보호법 개선 고려 요소: GDPR과 개인정보 보호법의 비교·분석 (Considerations for the Improving Domestic Personal Information Protection Act in accordance with The Life Cycle of Personal Information In Generative Artificial Intelligence Model: Comparative analysis of GDPR and Personal Information Protection Act of Korea)

  • 장재영
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.81-93
    • /
    • 2024
  • 본 논문은 기존에 개발된 개인정보 라이프 사이클 모델을 정리 및 분석 후 이러한 개인정보 라이프 사이클 모델이 인공지능 학습에 적용 가능한지를 살펴보았다. 검토 결과 기존의 개인정보 라이프 사이클은 인공지능 학습의 적용에 일부 한계가 있음을 발견했다. 따라서 본 논문에서는 인공지능 학습에 적합한 개인정보 라이프 사이클을 제시했다. 새로운 개인정보 라이프 사이클은 수집-학습-보유-생성·추론-차단·재학습·삭제 단계로 구성했다. 새로운 모델 제시에 따라 현행 개인정보 보호법 조항과 일치 여부를 검토 후 향후 법령 개정 방향을 제시했다. 본 논문은 인공지능 학습과 개인정보 보호의 영역에서의 체계적 접근 가능성을 높였다는 측면에서 의의가 있다.

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.29-42
    • /
    • 2023
  • 본 논문은 서울, 부산, 인천과 같은 대한민국의 주요 도시들을 대상으로 일사량 예측 정확도를 향상하기 위한 방법론을 제안한다. 제안한 방법론은 먼저 GAN, CTGAN, Copula GAN, WGANGP, TVAE 등 다섯 가지 생성 모델을 이용하여 기존 학습 데이터와 유사한 독립 변수들을 생성한다. 다음으로 모델 학습에서의 데이터 편향성을 개선하고자, 생성한 독립 변수들에서 각각 랜덤 포레스트와 심층 신경망을 통해 종속 변숫값을 도출하여 학습 데이터 셋을 구축하고, 이를 기존 학습데이터 셋과 결합하여 예측 모델을 구성한다. 실험 결과, 증강된 데이터 셋으로 학습한 모델들은 기존 데이터 셋으로 학습한 모델들보다 향상된 성능을 나타내었다. 특히 CTGAN은 복잡한 다변량 데이터 관계를 효과적으로 다루는 메커니즘으로 인해 우수한 결과를 도출하였으며, 생성된 데이터는 일사량의 다양한 변화와 실제 변동성과 효과적으로 반영하였다. 제안한 방법론은 고품질의 생성 데이터로 학습 데이터를 증강함으로써, 데이터 부족 현상 문제를 다룰 수 있을 뿐만 아니라 지속 가능한 발전을 위한 태양광 발전 시스템 운영에도 이바지할 수 있을 것으로 기대한다.

미래 스마트 제조를 위한 인공지능 기술동향 (Trends in AI Technology for Smart Manufacturing in the Future)

  • 이은서;배희철;김현종;한효녕;이용귀;손지연
    • 전자통신동향분석
    • /
    • 제35권1호
    • /
    • pp.60-70
    • /
    • 2020
  • Artificial intelligence (AI) is expected to bring about a wide range of changes in the industry, based on the assessment that it is the most innovative technology in the last three decades. The manufacturing field is an area in which various artificial intelligence technologies are being applied, and through accumulated data analysis, an optimal operation method can be presented to improve the productivity of manufacturing processes. In addition, AI technologies are being used throughout all areas of manufacturing, including product design, engineering, improvement of working environments, detection of anomalies in facilities, and quality control. This makes it possible to easily design and engineer products with a fast pace and provides an efficient working and training environment for workers. Also, abnormal situations related to quality deterioration can be identified, and autonomous operation of facilities without human intervention is made possible. In this paper, AI technologies used in smart factories, such as the trends in generative product design, smart workbench and real-sense interaction guide technology for work and training, anomaly detection technology for quality control, and intelligent manufacturing facility technology for autonomous production, are analyzed.

Application of Deep Learning to Solar Data: 3. Generation of Solar images from Galileo sunspot drawings

  • Lee, Harim;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyunjin;Kim, Taeyoung;Shin, Gyungin
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.81.2-81.2
    • /
    • 2019
  • We develop an image-to-image translation model, which is a popular deep learning method based on conditional Generative Adversarial Networks (cGANs), to generate solar magnetograms and EUV images from sunspot drawings. For this, we train the model using pairs of sunspot drawings from Mount Wilson Observatory (MWO) and their corresponding SDO/HMI magnetograms and SDO/AIA EUV images (512 by 512) from January 2012 to September 2014. We test the model by comparing pairs of actual SDO images (magnetogram and EUV images) and the corresponding AI-generated ones from October to December in 2014. Our results show that bipolar structures and coronal loop structures of AI-generated images are consistent with those of the original ones. We find that their unsigned magnetic fluxes well correlate with those of the original ones with a good correlation coefficient of 0.86. We also obtain pixel-to-pixel correlations EUV images and AI-generated ones. The average correlations of 92 test samples for several SDO lines are very good: 0.88 for AIA 211, 0.87 for AIA 1600 and 0.93 for AIA 1700. These facts imply that AI-generated EUV images quite similar to AIA ones. Applying this model to the Galileo sunspot drawings in 1612, we generate HMI-like magnetograms and AIA-like EUV images of the sunspots. This application will be used to generate solar images using historical sunspot drawings.

  • PDF

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

오픈 도메인 대화를 위한 노이징된 가이드 기반 생성 모델 (Noised Guide-based Generative Model for Open-domain Conversation)

  • 금빛나;김홍진;박상민;김재은;황금하;권오욱;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.82-87
    • /
    • 2022
  • 대화 모델은 대표적으로 검색 모델 또는 생성 모델을 기반으로 구현된다. 최근에는 두 모델의 장점은 융합하고 단점은 보완하기 위해 검색 기법과 생성 기법을 결합하는 연구가 활발히 이루어지고 있다. 그러나 생성 모델이 검색된 응답을 전혀 반영하지 않고 응답을 생성하여 검색 모델을 간과하는 문제 또는 검색된 응답을 그대로 복사해 생성하여 검색 모델에 과의존하는 문제가 발생한다. 본 논문에서는 이러한 문제들을 완화하며 검색 모델과 생성 모델을 모두 조화롭게 활용할 수 있는 대화 모델을 제안한다. 생성 모델이 검색 모델을 간과하는 문제를 완화하기 위해 학습 시 골드 응답을 검색된 응답과 함께 사용한다. 또한, 검색 모델에 과의존하는 문제를 완화하기 위해 검색된 응답들의 내용어 일부를 마스킹하고 순서를 무작위로 섞어 노이징한다. 검색된 응답은 대화 컨텍스트와의 관련성이 높은 것만을 선별하여 생성에 활용한다. 정량 평가 및 정성 평가를 통해 제안한 방법의 성능 향상 효과를 확인하였다.

  • PDF

KFREB: 생성형 한국어 대규모 언어 모델의 검색 기반 생성 평가 데이터셋 (KFREB: Korean Fictional Retrieval-based Evaluation Benchmark for Generative Large Language Models)

  • 이정섭;손준영;이태민;박찬준;강명훈;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-13
    • /
    • 2023
  • 본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.

  • PDF

생성형 AI 시대의 관광 분야 혁신교수법 적용에 관한 연구 (A Study on the Application of Innovative Teaching Method in Tourism in the Generation AI Era)

  • 최영환
    • 디지털산업정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-98
    • /
    • 2024
  • This study conducted an empirical study on the application of innovative teaching methods in the tourism field in a situation where innovative teaching methods suitable for the AI era are required. It was intended to provide exploratory basic data on the application of a wide range of innovative teaching methods through actual verification of the educational effectiveness before and after the application of the innovative teaching method. To this end, the effectiveness before and after education was empirically verified with 60 students who majored in tourism at Y University in the metropolitan area. Reliability analysis, corresponding sample t-test, and map analysis using graphs were performed on the collected data to increase visibility. As a result of the study, it was found that all the competencies of the innovative teaching method had a statistically significant influence after the application of the innovative teaching method. In addition, by increasing the effect of interaction between instructors and learners acting as facilitators, exploratory results were derived for potential benefits and areas that could be improved.

BCE 패턴 기반 마이크로서비스 아키텍처의 배치 유형 식별을 위한 생성형 AI 파인튜닝 방법 (Generative AI Fine-tuning Method for Identifying Deployment Types of BCE Pattern-based Microservice Architecture)

  • 조대영;정수민;박준석;염근혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 추계학술발표대회
    • /
    • pp.451-454
    • /
    • 2024
  • 마이크로서비스 아키텍처는 마이크로서비스 간 약결합을 통한 높은 확장성과, 개별 배포를 통한 유지보수성을 제공하는 애플리케이션 구축 방법이다. 그러나, 마이크로서비스 아키텍처는 표준적인 배치방식이나 연결 방법이 부족하여, 마이크로서비스 아키텍처의 전문적인 지식 없이 마이크로서비스 단위를 구분하고 약결합 구조를 배치하기에는 어려움이 있다. 따라서, 본 논문에서는 마이크로서비스 아키텍처의 BCE 패턴 기반 배치 방안으로 마이크로서비스의 기능 및 약결합 구조를 생성형 AI로 학습하는 방법을 제시한다. 제안하는 방법에 따라 생성형 AI 모델인 GPT-3.5-turbo를 바탕으로 파인튜닝 한 결과 파인튜닝 모델을 활용한 배치 정답률이 14% 향상되는 것을 확인하였다. 또한, 파인튜닝 학습 요소의 반영률을 조절하여 모델의 비교 평가를 수행한 결과로 f1-score가 0.019 증가한 것을 통해 파인튜닝 요소가 정답을 결정하는 데 필요한 요소임을 확인하였다.

초거대 인공지능의 국방 분야 적용방안: 새로운 영역 발굴 및 전투시나리오 모델링을 중심으로 (Application Strategies of Superintelligent AI in the Defense Sector: Emphasizing the Exploration of New Domains and Centralizing Combat Scenario Modeling)

  • 박건우
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.19-24
    • /
    • 2024
  • 미래의 군사 전투 환경은 현재의 군(軍) 인구 감소 및 변화하는 양상에 맞춰 국방 분야에서 인공지능(AI)의 역할과 중요성이 급격히 확대되고 있다. 특히, 민간에서의 AI(Artificial Intelligence) 개발은 OpenAI의 Chat-GPT 등장 이후 초거대 AI(Super-Giant AI, also known as Hyperscale AI), 즉 파운데이션 모델을 기반으로 새로운 영역에서 부상하고 있다. 미국 국방부는 CDAO(Chief Digital and AI Office) 산하의 Task Force Lima를 조직하여 LLM(Large Language Model)과 생성형 AI의 활용 방안에 대한 연구를 진행 중이며, 중국, 이스라엘 등 군사 선진국에서도 초거대 AI를 군에 적용하기 위한 연구를 수행 중이다. 따라서, 우리 군도 무기체계에 초거대 AI 모델의 활용 가능성과 적용분야에 대한 연구의 필요성이 대두되고 있다. 본 논문에서는 기존의 특화 AI와 초거대 AI(파운데이션 모델, Foundation Model)의 특징 및 장·단점을 비교하고, 무기체계에 적용될 수 있는 초거대 AI의 새로운 적용분야를 발굴하였다. 본 연구는 미래의 적용 분야와 잠재적인 도전과제에 대한 예측과 함께 초거대 인공지능을 국방작전에 효과적으로 통합하기 위한 통찰력을 제공하고, 선진화된 인공지능 시대에서의 국방 정책 개발, 국제 안보 전략을 형성하는 데 기여할 것으로 기대한다.