• Title/Summary/Keyword: generalized parameters

Search Result 727, Processing Time 0.024 seconds

Micromechanical Analysis on Anisotropic Elastic Deformation of Granular Soils (미시역학을 이용한 사질토의 이방적 탄성 변형 특성의 해석)

  • 정충기;정영훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.99-107
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments show that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic elastic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Generalized contact model for the irregular contact surface of soil particles is adopted to represent the force-displacement relationship in each contact point far the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic elastic moduli is derived in the isotropic stress condition. A detailed procedure to determine the model parameters is proposed with emphasis on the practical applicability of micromechanical program to analyze the elastic behavior of the granular soils.

A Study on the Foot Plantar Pressure and Temperature changes of the Developed Combat boots with Functional Impact Absorption and Ventilation Insole (충격흡수 및 통기기능 인솔을 적용한 개발 전투화의 족저압력 및 온도변화 연구)

  • Han, Ki-Hoon;Lee, Joong-Sook;Bae, Kang-Ho;Shin, Jin-Hyung;Jeong, Sang-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • The purpose of this study was to compare the foot plantar pressure and temperature changes of the developed combat boots with functional impact absorption and ventilation insole. A total of 11 male subjects(age: $21.8{\pm}2.2yrs$, height: $174.3{\pm}3.6cm$, weight: $71.6{\pm}8.6kg$, foot length: $261.0{\pm}1.0mm$) were recruited to compare the foot plantar pressure and temperature changes of the three types of combat boots: Combat boots A (generalized combat boots), Combat boots B (developed combat boots with ventilation function), Combat boots C (Application of ventilation function and impact absorption insole to combat boots B). Pedar-X and a portable thermistor temperature sensor were used to measure the foot plantar pressure parameters and the internal temperature of the combat boots, respectively. One-way ANOVA was used to compare the results of plantar pressure and temperature changes. The results were as follows: First, in the foot plantar pressure parameters, combat boots C showed the significant lower maximum foot plantar pressure in the right/left rear foot compared with combat boots A and average foot plantar pressure in the left foot compared with combat boots B. Second, after 40 minutes from the start of walking, the developed combat boots B and C showed the significant lower temperature than the general combat boots A.

Flow Calibration and Validation of Daechung Lake Watershed, Korea Using SWAT-CUP (SWAT-CUP을 이용한 대청호 유역 장기 유출 유량 보정 및 검증)

  • Lee, Eun-Hyoung;Seo, Dong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.711-720
    • /
    • 2011
  • SWAT (Soil and Water Assessment Tool) model was calibrated for the flow rate of the Deachung lake with a large area of 3108.29 $km^2$. Application of SWAT model requires significant number of input data and is prone to result in uncertainties due to errors in input data, model structure and model parameters. The SUFI-2 (Sequential Uncertainty Fitting Ver. 2) program and GLUE (Generalized Likelihood Uncertainty Estimation) program in SWAT-CUP (SWAT-Calibration and Uncertainty Program) are used to select the best parameters for SWAT model. Optimal combination of parameter values was determined through 2,000 iterative SWAT model runs. The Nash-Sutcliffe values and $R^2$ values were 0.87 and 0.89 respectively indicating both methods show good agreements with observed data successfully. RMSE and MSE values also showed similar results for both programs. It seems the SWAT-CUP has a great practical appeal for parameter optimization especially for large basin area and it also can be used for less experienced SWAT model users.

A Study on the Risk Assessment by Obstacles in Ship's Passage (선박 통항로 내 장해물에 따른 위험도 평가에 관한 연구)

  • Kim, Ni-Eun;Park, Young-Soo;Park, Sang-Won;Kim, So-Ra;Lee, Myoung-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.244-253
    • /
    • 2022
  • Recently, installation projects of structures such as offshore wind farms have been increasing, and the installation of such marine obstacles could affect ships that pass nearby. Therefore, the purpose of this study was to quantitatively evaluate the risk posed to passing ships due to obstacles in their passage. Hence, parameters that affected the risk were selected, and scenarios were set based on the parameters. The scenarios were evaluated through the ES model, which is a risk assessment model, and we confirmed that the risk ratio increased as the size of the obstacle increased, the safe distance from the obstacle increased, the speed of ship decreased, and the traffic volume increased. Additionally, we found that when the traffic flow direction was designated, the risk ratio was lower than that of general traffic flow. In this study, we proposed a generalization model based on the results of the performed scenarios, applied it to the Dadaepo offshore wind farm, and demonstrated that the estimation of the approximate risk ratio was possible through the generalization model. Finally, we judged that the generalization model proposed in this study could be used as a preliminary reference for the installation of marine obstacles.

Brain Metabolic Network Redistribution in Patients with White Matter Hyperintensities on MRI Analyzed with an Individualized Index Derived from 18F-FDG-PET/MRI

  • Jie Ma;Xu-Yun Hua;Mou-Xiong Zheng;Jia-Jia Wu;Bei-Bei Huo;Xiang-Xin Xing;Xin Gao;Han Zhang;Jian-Guang Xu
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.986-997
    • /
    • 2022
  • Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.

A Study on the Generalization of Multiple Linear Regression Model for Monthly-runoff Estimation (선형회귀모형(線型回歸模型)에 의한 하천(河川) 월(月) 유출량(流出量) 추정(推定)의 일반화(一般化)에 관한 연구(硏究))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 1980
  • The Linear Regression Model to extend the monthly runoff data in the short-recorded river was proposed by the author in 1979. Here in this study generalization precedure is made to apply that model to any given river basin and to any given station. Lengthier monthly runoff data generated by this generalized model would be useful for water resources assessment and waterworks planning. The results are as follows. 1. This Linear Regression Model which is a transformed water-balance equation attempts to represent the physical properties of the parameters and the time and space varient system in catchment response lumpedly, qualitatively and deductively through the regression coefficients as component grey box, whereas deterministic model deals the foregoings distributedly, quantitatively and inductively through all the integrated processes in the catchment response. This Linear Regression Model would be termed "Statistically deterministic model". 2. Linear regression equations are obtained at four hydrostation in Geum-river basin. Significance test of equations is carried out according to the statistical criterion and shows "Highly" It is recognized th at the regression coefficients of each parameter vary regularly with catchment area increase. Those are: The larger the catchment area, the bigger the loss of precipitation due to interception and detention storage in crease. The larger the catchment area, the bigger the release of baseflow due to catchment slope decrease and storage capacity increase. The larger the catchment area, the bigger the loss of evapotranspiration due to more naked coverage and soil properties. These facts coincide well with hydrological commonsenses. 3. Generalized diagram of regression coefficients is made to follow those commonsenses. By this diagram, Linear Regression Model would be set up for a given river basin and for a given station (Fig.10).

  • PDF

The Tooth Size RelaTionship Between Crowding Patients and Normal Subjects in Korean (총생치열을 갖는 교정환자와 정상인의 치아크기 비교)

  • Han, Man-Deuk;Jeon, Eun-Sook
    • Journal of dental hygiene science
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • This study was undertaken to compare the tooth and arch size between crowding patient and normal subjects. Two group of dental casts were selected on the basis of crowding patients and normal subjects. One group, consisting of 40 pair of dental casts(20 male and 20 female), exhibited noncrowded dentitions. A second group, consisting of 40 pairs of dental cast(21 male and 21 female), exhibited remarkably crowding need for orthodontic treatment. Tooth width measurements were made with a sliding digital caliper with Vernier scale neared 0.01 mm. Mean, standard deviation, T-test of the following parameters were used to compare two group : individual mesiodistal crown widths, arch width and arch length. The following result were obtained. In the mesiodistal crown widths, normal subjects had generalized larger teeth than Wheeler's results(human tooth size index), except for maxillary central incisor, maxillary 2nd premolar, mandibular canine, and mandibular 1st molar. In the orthodontic patients with crowded dentitions, the mesiodistal tooth crown widths were generalized larger teeth than noncrowded normal subjects. In the arch width and arch length, the crowded dentition group had smaller arch width and arch length than the normal group.

  • PDF

Estimation of diesel fuel demand function using panel data (시도별 패널데이터를 이용한 경유제품 수요함수 추정)

  • Lim, Chansu
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.80-92
    • /
    • 2017
  • This paper attempts to estimate the diesel fuel demand function in Korea using panel data panel data of 16 major cities or provinces which consist of diesel demands, diesel market prices and gross value added from the year 1998 to 2015. I apply panel GLS(generalized least square) model, fixed effect model, random effect model and dynamic panel model to estimating the parameters of the diesel fuel demand function. The results show that short-run price elasticities of the diesel fuel demand are estimated to be -0.2146(panel GLS), -0.2886(fixed effect), -0.2854(random effect), -0.1905(dynamic panel) respectively. And short-run income elasticities of the diesel fuel demand are estimated to be 0.7379(panel GLS), 0.4119(fixed effect), 0.7260(random effect), 0.4166(dynamic panel) respectively. The short-run price and income elasticities explain that demand for diesel fuel is price- and income-inelastic. The long-run price and income elasticities are estimated to be -0.4784, 1.0461 by dynamic panel model, which means that demand for diesel fuel is price-inelastic but income-elastic in the long run. In addition I apply dummy variable model to estimate the effect of 16 major cities or provinces on diesel demands. The results show that diesel demands is affected 10 regions on the basis of Seoul.

Analysis of Changes in Rainfall Frequency Under Different Thresholds and Its Synoptic Pattern (절점기준에 따른 강우빈도 변화 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.791-803
    • /
    • 2016
  • Recently, frequency of extreme rainfall events in South Korea has been substantially increased due to the enhanced climate variability. Korea is prone to flooding due to being surrounded by mountains, along with high rainfall intensity during a short period. In the past three decades, an increase in the frequency of heavy rainfall events has been observed due to enhanced climate variability and climate change. This study aimed to analyze extreme rainfalls informed by their frequency of occurrences using a long-term rainfall data. In this respect, we developed a Poisson-Generalized Pareto Distribution (Poisson-GPD) based rainfall frequency method which allows us to simultaneously explore changes in the amount and exceedance probability of the extreme rainfall events defined by different thresholds. Additionally, this study utilized a Bayesian approach to better estimate both parameters and their uncertainties. We also investigated the synoptic patterns associated with the extreme events considered in this study. The results showed that the Poisson-GPD based design rainfalls were rather larger than those of based on the Gumbel distribution. It seems that the Poisson-GPD model offers a more reasonable explanation in the context of flood safety issue, by explicitly considering the changes in the frequency. Also, this study confirmed that low and high pressure system in the East China Sea and the central North Pacific, respectively, plays crucial roles in the development of the extreme rainfall in South Korea.

Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses (축응력 및 횡보강근을 고려한 콘크리트의 전단마찰내력 평가모델)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2016
  • Shear friction strength model of concrete was proposed to explain the direct friction mechanism at the concrete interfaces intersecting two structural elements. The model was derived from a mechanism analysis based on the upper-bound theorem of concrete plasticity considering the effect of transverse reinforcement and applied axial loads on the shear strength at concrete interfaces. Concrete was modelled as a rigid-perfectly plastic material obeying modified Coulomb failure criteria. To allow the influence of concrete type and maximum aggregate size on the effectiveness strength of concrete, the stress-strain models proposed by Yang et al. and Hordijk were employed in compression and tension, respectively. From the conversion of these stress-strain models into rigidly perfect materials, the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction were then mathematically generalized. The proposed shear friction strength model was compared with 91 push-off specimens compiled from the available literature. Unlike the existing equations or code equations, the proposed model possessed an application of diversity against various parameters. As a result, the mean and standard deviation of the ratios between experiments and predictions using the present model are 0.95 and 0.15, respectively, indicating a better accuracy and less variation than the other equations, regardless of concrete type, the amount of transverse reinforcement, and the magnitude of applied axial stresses.