• 제목/요약/키워드: generalized parameters

검색결과 727건 처리시간 0.025초

VOB를 이용한 선형 설계 실용화에 대한 연구 (Practical Hull Form Design using VOB)

  • 김현철
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.235-242
    • /
    • 2016
  • In general, ship hull form design is carried out in two stages. In the first stage, the longitudinal variation of the sectional area curves is adapted from a similar mother ship to determine the volume distribution in ships. At this design stage, the initial design conditions of displacement, longitudinal center of buoyancy, etc. are satisfied and the global hydrodynamic properties of the structure are optimized. The second stage includes the local designing of the sectional forms. Sectional forms are related to the local pressure resistance in the fore- and aft-body shapes, cargo boundaries, interaction between the hull and propeller, etc. These relationships indicate that the hull sections need to be optimized in order to minimize the local resistance. The volumetric balanced (VOB) variation of ship hull forms has been suggested by Kim (2013) as a generalized, systematic variation method for determining the sectional area curves in hull form design. This method is characterized by form parameters and is based on an optimization technique. This paper emphasizes on an extensional function of the VOB considering a geometrical wave profile. We select a container ship and an LNG carrier to demonstrate the applicability of the proposed technique. Through analysis, we confirm that the VOB method, considering the geometrical wave profile, can be used as an efficient tool in the hull form design for ships.

Enlarge duct length optimization for suddenly expanded flows

  • Pathan, Khizar A.;Dabeer, Prakash S.;Khan, Sher A.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.203-214
    • /
    • 2020
  • In many applications like the aircraft or the rockets/missiles, the flow from a nozzle needs to be expanded suddenly in an enlarged duct of larger diameter. The enlarged duct is provided after the nozzle to maximize the thrust created by the flow from the nozzle. When the fluid is suddenly expanded in an enlarged duct, the base pressure is generally lower than the atmospheric pressure, which results in base drag. The objective of this research work is to optimize the length to diameter (L/D) ratio of the enlarged duct using the CFD analysis in the flow field from the supersonic nozzle. The flow from the nozzle drained in an enlarged duct, the thrust, and the base pressure are studied. The Mach numbers for the study were 1.5, 2.0 and 2.5. The nozzle pressure ratios (NPR) of the study were 2, 5 and 8. The L/D ratios of the study were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Based on the results, it is concluded that the L/D ratio should be increased to an optimum value to reattach the flow to an enlarged duct and to increase the thrust. The supersonic suddenly expanded flow field is wave dominant, and the results cannot be generalized. The optimized L/D ratios for various combinations of flow and geometrical parameters are given in the conclusion section.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Building Extraction and 3D Modeling from Airborne Laser Scanning Data

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Yu, Ki-Yun;Kim, Yong-Il
    • 대한원격탐사학회지
    • /
    • 제23권5호
    • /
    • pp.447-453
    • /
    • 2007
  • The demand for more accurate and realistic 3D urban models has been increasing more and more. Many studies have been conducted to extract 3D features from remote sensing data such as satellite images, aerial photos, and airborne laser scanning data. In this paper a technique is presented to extract and reconstruct 3D buildings in urban areas using airborne laser scanning data. Firstly all points in a building were divided into some groups by height difference. From segmented laser scanning data of irregularly distributed points we generalized and regularized building boundaries which better approximate the real boundaries. Then the roof points which are subject to the same groups were classified using pre-defined models by least squares fitting. Finally all parameters of the roof surfaces were determined and 3D building models were constructed. Some buildings with complex shapes were selected to test our presented algorithms. The results showed that proposed approach has good potential for reconstructing complex buildings in detail using only airborne laser scanning data.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

지형특성을 고려한 레이더 강수량 편의보정 매개변수 지역화 연구 (A Study on Regionalization of Bias Correction Parameters for Radar Precipitation Considering Geomorphic Characteristics)

  • 김태정;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.57-57
    • /
    • 2019
  • 최근 수문기상학 분야에서 레이더 강수량을 활용한 응용연구가 활발하게 진행되고 있다. 하지만 레이더 강수량은 경험적으로 설정된 레이더 반사도-강우강도 관계식을 활용하여 레이더 강수량을 산정하기 때문에 실제지상에 도달하는 강수량과 정량적인 오차가 필연적으로 발생한다. 따라서 고해상도의 레이더 강수량을 활용한 신뢰도 높은 수문해석을 위하여 레이더 강수량의 편의보정이 필수적으로 선행되어야한다. 본 연구에서는 불확실성을 고려한 레이더 강수량 편의보정을 위하여 Bayesian 추론기법과 일반화 선형모형(generalized linear model)을 연계하여 레이더 강수량 편의보정 매개변수를 산정하였다. 일반화 선형모형을 적용한 레이더 강수량 편의보정 결과는 현재 널리 사용되고 있는 평균보정(mean field bias) 기법에 비하여 통계지표가 개선된 레이더 강수량 편의보정 결과를 도출하였다. 추가적으로 지형학적 특성에 따른 레이더 강수량 편의보정 매개변수의 변동성을 분석하여 고도 및 이격거리에 따른 편의보정 매개변수의 지역화 공식을 제시하였다. 본 연구를 통하여 개발된 레이더 강수량 편의보정 매개변수 산정 및 지역화 연구는 레이더 관측전략 수립과정에 유용한 기초자료로 활용될 것으로 판단된다.

  • PDF

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Reliability analysis of simply supported beam using GRNN, ELM and GPR

  • Jagan, J;Samui, Pijush;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.739-749
    • /
    • 2019
  • This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.

High performance active tuned mass damper inerter for structures under the ground acceleration

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.149-163
    • /
    • 2019
  • By integrating an active tuned mass damper (ATMD) and an inerter, the ATMDI has been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Employing the mode generalized system, the dynamic magnification factors (DMF) of the structure-ATMDI system are formulated. The criterion can then be defined as the minimization of maximum values of the DMF of the controlled structure for optimum searching. By resorting to the defined criterion and the particle swarm optimization (PSO), the effects of varying the crucial parameters on the performance of ATMDI have been scrutinized in order to probe into its superiority. Furthermore, the results of both ATMD and tuned mass dampers inerter (TMDI) are included into consideration for comparing. Results corroborate that the ATMDI outperforms both ATMD and TMDI in terms of the effectiveness and robustness. Especially, the ATMDI may greatly reduce the demand on both the mass ratio and inerter mass ratio, thus being capable of further miniaturizing both the ATMD and TMDI. Likewise the miniaturized ATMDI still keeps nearly the same stroke as the TMDI with a larger mass ratio. Hence, the ATMDI is deemed to be a high performance control device with the miniaturization and suitable for super-tall buildings.

FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구 (Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.