• Title/Summary/Keyword: generalized likelihood ratio(GLR) chart

Search Result 4, Processing Time 0.013 seconds

A generalized likelihood ratio chart for monitoring type I right-censored Weibull lifetimes (제1형 우측중도절단된 와이블 수명자료를 모니터링하는 GLR 관리도)

  • Han, Sung Won;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.647-663
    • /
    • 2017
  • Weibull distribution is a popular distribution for modeling lifetimes because it reflects the characteristics of failure adequately and it models either increasing or decreasing failure rates simply. It is a standard method of the lifetimes test to wait until all samples failed; however, censoring can occur due to some realistic limitations. In this paper, we propose a generalized likelihood ratio (GLR) chart to monitor changes in the scale parameter for type I right-censored Weibull lifetime data. We also compare the performance of the proposed GLR chart with two CUSUM charts proposed earlier using average run length (ARL). Simulation results show that the Weibull GLR chart is effective to detect a wide range of shift sizes when the shape parameter and sample size are large and the censoring rate is not too high.

A GLR Chart for Monitoring a Zero-Inflated Poisson Process (ZIP 공정을 관리하는 GLR 관리도)

  • Choi, Mi Lim;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.345-355
    • /
    • 2014
  • The number of nonconformities in a unit is commonly modeled by a Poisson distribution. As an extension of a Poisson distribution, a zero-inflated Poisson(ZIP) process can be used to fit count data with an excessive number of zeroes. In this paper, we propose a generalized likelihood ratio(GLR) chart to monitor shifts in the two parameters of the ZIP process. We also compare the proposed GLR chart with the combined cumulative sum(CUSUM) chart and the single CUSUM chart. It is shown that the overall performance of the GLR chart is comparable with CUSUM charts and is significantly better in some cases where the actual directions of the shifts are different from the pre-specified directions in CUSUM charts.

GLR Charts for Simultaneously Monitoring a Sustained Shift and a Linear Drift in the Process Mean

  • Choi, Mi Lim;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2014
  • This paper considers the problem of monitoring the mean of a normally distributed process variable when the objective is to effectively detect both a sustained shift and a linear drift. The design and application of a generalized likelihood ratio (GLR) chart for simultaneously monitoring a sustained shift and a linear drift are evaluated. The GLR chart has the advantage that when we design this chart, we do not need to specify the size of the parameter change. The performance of the GLR chart is compared with that of other control charts, such as the standard cumulative sum (CUSUM) charts and the cumulative score (CUSCORE) charts. And we compare the proposed GLR chart with the GLR charts designed for monitoring only a sustained shift and for monitoring only a linear drift. Finally, we also compare the proposed GLR chart with the chart combinations. We show that the proposed GLR chart has better overall performance for a wide range of shift sizes and drift rates relative to other control charts, when a special cause produces a sustained shift and/or a linear drift in the process mean.

Poisson GLR Control Charts (Poisson GLR 관리도)

  • Lee, Jaeheon;Park, Jongtae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.787-796
    • /
    • 2014
  • Situations where sample size is not constant are common when monitoring a process with Poisson count data. In this paper, we propose a generalized likelihood ratio(GLR) control chart to detect shifts in the Poisson rate when the sample size varies. The performance of the proposed GLR chart is compared with the performance of several cumulative sum(CUSUM) type charts. It is shown that the overall performance of the GLR chart is comparable with CUSUM type charts and is significantly better in cases where the actual value of the shift is different from the pre-specified value in CUSUM type charts.