• 제목/요약/키워드: generalized displacement control method

검색결과 8건 처리시간 0.02초

Nonlinear analysis using load-displacement control

  • Kwon, Young-Doo;Kwon, Hyun-Wook;Lim, Beom-Soo
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.153-172
    • /
    • 2005
  • A new load/displacement parameter method is proposed for the simultaneous control of applied loads and structural displacements at one or more points. The procedure is based on a generalized Riks' method, which utilizes load/displacement parameters as scaling factors to analyze post-buckling phenomena including snap-through or snap-back. The convergence characteristics are improved by employing new relaxation factors through an incremental displacement parameter, particularly in a region that exhibits severe numerical instability. The improved performance is illustrated by means of a numerical example.

Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling

  • Thai, Huu-Tai;Kim, Seung-Eock;Kim, Jongmin
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, a conventional refined plastic hinge analysis is improved to account for the effects of local buckling and lateral-torsional buckling. The degradation of flexural strength caused by these effects is implicitly considered using practical LRFD equation. The second-order effect is captured using stability functions to minimize modeling and solution time. An incremental-iterative scheme based on the generalized displacement control method is employed to solve the nonlinear equilibrium equations. A computer program is developed to predict the second-order inelastic behavior of space steel frames. To verify the accuracy and efficiency of the proposed program, the obtained results are compared with the existing results and those generated using the commercial finite element package ABAQUS. It can be concluded that the proposed program proves to be a reliable and effective tool for daily use in engineering design.

하중과 변위의 동시제어에 의한 좌굴후 현상해석 (Post-buckling analysis using a load-displacement control)

  • 권영두;임범수;박철;최진민
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델 (A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling)

  • 김태완;김준식
    • 한국전산구조공학회논문집
    • /
    • 제36권3호
    • /
    • pp.193-201
    • /
    • 2023
  • 본 논문에서는 인장 좌굴 현상을 소개하고 이를 이용한 음의 포아송 효과를 가지는 구조물에 대한 분석을 다룬다. 일반적으로 널리 알려진 좌굴은 압축하중 하에서의 안정성 문제임에 반하여, 인장 좌굴은 인장에 의해 국소적으로 압축력이 생겨 발생하는 좌굴이다. 고전적인 좌굴에 비하여 비교적 최근의 연구이기 때문에 상대적으로 잘 알려지지 않았다. 이에 인장 좌굴 현상을 에너지 관점에서 고찰하고, 해석을 위하여 비틀림 스프링을 가지는 비선형 트러스 유한요소의 정식화를 수행하였다. 비선형해석을 통해 후좌굴 거동을 분석하고 비틀림 스프링이 주요 인자임을 확인하였다. 이러한 후좌굴 거동은 음의 포아송 비를 가지는 구조물에 적용할 수 있으며, 기계적 스위치 등의 장치에 적용할 가능성을 보였다. 얻어진 결과들의 정확성 확인을 위하여 해석해와 상용 유한요소해석 결과들과 비교하여, 개발된 유한요소 모델이 기초 설계에 유용함을 보였다.