• 제목/요약/키워드: generalized Dyson series

검색결과 2건 처리시간 0.016초

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL APPLIED TO MULTIPLE INTEGTALS

  • Kim, Bong-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권1호
    • /
    • pp.71-78
    • /
    • 2001
  • In 1984, Johnson[A bounded convergence theorem for the Feynman in-tegral, J, Math. Phys, 25(1984), 1323-1326] proved a bounded convergence theorem for hte Feynman integral. This is the first stability theorem of the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory. Johnson and Lapidus [Generalized Dyson series, generalized Feynman digrams, the Feynman integral and Feynmans operational calculus. Mem, Amer, Math, Soc. 62(1986), no 351] studied stability theorems for the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory for the functional with arbitrary Borel measure. These papers treat functionals which involve only a single integral. In this paper, we obtain the stability theorems for the Feynman integral as an $L(L_1 (\mathbb{R}^N), L_{\infty}(\mathbb{R}^{N}))$theory for the functionals which involve double integral with some Borel measures.

  • PDF

Existence theorems of an operator-valued feynman integral as an $L(L_1,C_0)$ theory

  • Ahn, Jae-Moon;Chang, Kun-Soo;Kim, Jeong-Gyoo;Ko, Jung-Won;Ryu, Kun-Sik
    • 대한수학회보
    • /
    • 제34권2호
    • /
    • pp.317-334
    • /
    • 1997
  • The existence of an operator-valued function space integral as an operator on $L_p(R) (1 \leq p \leq 2)$ was established for certain functionals which involved the Labesgue measure [1,2,6,7]. Johnson and Lapidus showed the existence of the integral as an operator on $L_2(R)$ for certain functionals which involved any Borel measures [5]. J. S. Chang and Johnson proved the existence of the integral as an operator from L_1(R)$ to $C_0(R)$ for certain functionals involving some Borel measures [3]. K. S. Chang and K. S. Ryu showed the existence of the integral as an operator from $L_p(R) to L_p'(R)$ for certain functionals involving some Borel measures [4].

  • PDF