• Title/Summary/Keyword: general equilibrium

Search Result 431, Processing Time 0.024 seconds

A Comparative Analysis of the Functional Values for Wastewater Treatment and Atmospheric Regulation in Coastal Wetland and Rice Paddy Ecosystems (갯벌과 간척농지의 수질 및 대기조절가치의 비교분석)

  • Pyo, Hee-Dong
    • Environmental and Resource Economics Review
    • /
    • v.10 no.1
    • /
    • pp.95-126
    • /
    • 2001
  • Functional values for wastewater treatment and atmospheric regulation in coastal wetland and rice paddy ecosystems are quantified, and an illustration is given on how to integrate biophysical parameters into a valuation framework. This is one of most controversial issues in economic analysis for wetland preservation versus wetland conversion to agricultural use. This paper includes theoretical considerations for estimating functional values of environmental ecosystems, and the integration of biophysical data and replacement cost method employed. Specific physical and geographical characteristics and data on ecosystem functions and services in coastal wetlands and rice paddies are addressed for evaluating their values in economic terms. In particular this paper indicates double counting problems and overestimation in the previous studies, and demonstrates how to avoid them and to maintain the consistency of valuation process involving a least-cost method, thus enables an accurate integration of the coastal wetland ecology and wetland economics. As a result which is far away from the previous studies, the total economic present value of wastewater assimilation by coastal wetland is estimated at 7,484,640 won/ha, and the net present value of positive effect for atmospheric regulation, negative effects for air pollution and water pollution by rice paddy is estimated at -37,934 won/ha, assuming that resources are infinitely long-lived and the annual value and the rate of discount (10%) is constant every year. In conclusion, for further reliability and validity of functional values for natural resources it is very noteworthy that a general equilibrium framework that could directly incorporate the interdependence between ecosystem functions and services would be preferred to the partial equilibrium framework.

  • PDF

Removal of Phenol from Aqueous Solutions by Activated Red Mud: Equilibrium and Kinetics Studies

  • Shirzad-Siboni, Mehdi;Jafari, Seyed-Javad;Farrokhi, Mehrdad;Yang, Jae Kyu
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • In this work, removal of phenol from aqueous solutions by activated red mud was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to observe the morphology and surface components of activated red mud, respectively. The effects of various parameters on the removal efficiency were studied, such as contact time, pH, initial phenol concentration, and adsorbent dosage. The removal percentage of phenol was initially increased, as the solution pH increased from 3 to 7, and then decreased above neutral pH. The removal percentage of phenol was decreased by increasing the initial phenol concentrations. Adsorption results show that equilibrium data follow the Freundlich isotherm, and kinetic data was well described by a pseudo-second-order kinetic model. Experimental results show that the activated red mud can be used to treat aqueous solutions containing phenol, as a low cost adsorbent with high efficiency.

"A survey of Elementary School Children,s Concept of Temperature" (국민학교 아동의 온도개념 형성에 관한 조사)

  • Kim, Hyun-Jae;Kim, Han-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.10 no.1
    • /
    • pp.95-118
    • /
    • 1990
  • This students ideas in science are diverse and unique It is realized that children's preconceptions and misconceptions established before lessoning hgve a crucial in fluence on the following education. so it is meaningful to analyse the children's concept of temperature for the better teaching strategy in this study. This survey of the Elementary school children's concept is designed for the subtopics of temperature as the relation between heat and temperature, He relation between volume(size) and temperature, the temperature of change of state on water, the temperature of substances in the condition of thermal equilibrium. Using Clinical method, this research was executed to 306 children at elementary school. The network method or the analyse of questionnaires were used to analyse the children's response. Findings of this survey are as follow. Students are already familiar with such concept as this increase of temperature by geating, but they think every substance is not the case. Many students appears to believe that the temperature of an object(substance) is related to its size(vloume) Qualitative tasks are difficult than qualitative ones. This trend appear highly in the low grade students. Don't know the temperature of change of state on water and it's stability They think that the temperature is determined by the heating time(period) and the temperature of heating source. Students think, in general that temperature of substance in the condition of thermal equilibrium is different.

  • PDF

A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA

  • Lee, Byung-Hwa;Yeo, Ga-Young;Jang, Kyeung-Joo;Lee, Dong-Jin;Noh, Sang-Gyun;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1031-1034
    • /
    • 2009
  • Fluorescence of quinolones including norfloxacin, ciprofloxacin and S- and R-ofloxacin is quenched upon association with single and double-stranded DNA (ss- and ds-DNA). The ratios of fluorescence intensity in the presence of DNA to its absent were plotted with respect to the DNA concentration to construct the Stern-Volmer plot. The slope of the Stern-Volmer plot become larger as the temperature is lowered, ensuring that the fluorescence quenching is static process, i.e., the fluorescence is quenched by formation of the non-fluorescent complex between quinolone and DNA. In the static quenching mechanism, the quenching constant which is equivalent to the slope of the Stern-Volmer plot, is considered as the equilibrium constant for the association of quinolones and DNA. From the temperature-dependent equilibrium constant, ${\Delta}H^0\;and\;{\Delta}S^0$ was obtained using the van’t Hoff relation. In general, association of the quinolone with ds- as well as ss-DNA is energetically favorable (an exothermic) process while the entropy change was unfavorable. Due to the steric effect of the substituents, the effect of the quinolone ring is smaller on the ss-DNA compared to ds-DNA.

A Comparison of the IAS and Langmuir Models for Multisolute Adsorption of Organic Cowlpounds in Soil (유기화합물들이 혼합상태에서 토양입자에 흡착하는 정도를 IAS와 Langmuir Model을 이용한 예측비교연구)

  • 윤춘경
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.121-138
    • /
    • 1995
  • The Langmuir competitive model and the IAS(ideal adsorption solution) model were eveluated and compared in a multisolute adsorption study using five organic compounds (phenol, 2, 4-dichlorophenol, 2, 4, 6-trichlorophenot brucine, and thiourea) and two soils. The chemicals were evaluated individually and in mixtures. In general, the IfS model predicted the equilibrium concentration of a chemical in a mixture better than the Langmuir model. The Langmuir model underestimated the sorption of phenol when the concentration of another compound in a mixture with phenol was high. Neither of the models predicted satisfactorily the equilibrium concentration of thiourea in the mixtures. Thiourea is an aliphatic compound while the other four chemicals are aromatic compounds.

  • PDF

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements

  • Viola, Erasmo;Artioli, Edoardo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.789-817
    • /
    • 2004
  • This paper deals with the modal analysis of rotational shell structures by means of the numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in terms of stress resultants and couples. These equations are subsequently linearized and specialized for the rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method in meridional direction, yielding accurate results with an extremely low computational cost and not using the so-called "delta-point" technique.

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

Analysis on Economic Effect and Resource Recovery of Major Coastal Fisheries by Vessel Buy-back Program in Korea (어선감척사업에 따른 주요 연안어업의 자원회복 및 경제적 효과 분석)

  • Cho, Hoon-Seok;Nam, Jong-Oh
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.1
    • /
    • pp.17-37
    • /
    • 2019
  • The purpose of this study is to estimate the resource recovery effect and the economic effect of the fishermen by the fisheries vessel buy-back program. First, this study standardizes the fishing efforts of coastal gill net, coastal trap, and coastal composite fisheries using Gavaris general linear model. Second, the resource evaluation is performed by using vessel buy-back program data, and also the CYP model based on exponential growth function is applied. In order to derive the effect of the vessel buy-back program, the MSY with the vessel buy-back program is compared with the MSY without the vessel buy-back program. Finally, we compare and analyze producer surplus under the equilibrium of the MEY and the OA using bioeconomic model. In conclusion, the vessel buy-back program has shown an increase in resource growth and economic improvement for the remaining fishermen. The result shows that the remaining fishermen are able to obtain an increase in producer surplus of about 53% due to the vessel buy-back program under equilibrium levels of the open access and the maximum economic yield.

Applicability Study of Geotextile Mesh Soil Nail on Slope Reinforcement Using Numerical Analysis (수치해석을 이용한 토목섬유망 네일의 사면보강에 대한 적용성 연구)

  • You, Kwang Ho;Jung, Yeun Hak;Ha, Ji Young
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.264-274
    • /
    • 2015
  • In this study, the applicability of geotextile mesh soil nails on slopes was evaluated by numerical analysis to reduce environmental problems which a general soil nailing might produce and to improve its economical efficiency and construction convenience. To this end, in situ pull-out tests were conducted for both general soil nail and geotextile mesh soil nail and their pull-out characteristics were analyzed. Also, finite difference method was used to verify the suitability of numerical simulation. Parameters for nail and ground conditions were selected and sensitivity analysis was performed for the evaluation of slope stability. In addition, analysis was performed by limit equilibrium method which is widely used for slope stability analysis in practice. As a result, if the nail diameter was same, there is no big difference between geotextile mesh soil nails and general soil nails in terms of slope stability. Therefore it can be expected that geotextile mesh soil nails could be effective for slope reinforcement since they could keep a slope as stable as general soil nails and give better economical efficiency and construction convenience than general soil nails.