• Title/Summary/Keyword: general circulation model

Search Result 205, Processing Time 0.025 seconds

General Circulation Model Derived Climate Change Impact and Uncertainty Analysis of Maize Yield in Zimbabwe (GCM 예측자료를 이용한 기후변화가 짐바브웨 옥수수 생산에 미치는 영향 및 불확실성 분석)

  • Nkomozepi, Temba D.;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.83-92
    • /
    • 2012
  • 짐바브웨는 식량부족을 격어 오고 있으며, 이는 기후변화에 따른 수자원의 부족, 인구증가, 개발 및 환경보전 등으로 인하여 앞으로는 더욱 심화될 것으로 보인다. 3가지 배출시나리오 (A2, A1B, B1)에 대한 13개의 GCM 기후자료로부터 상세화한 기후예측값과 AquaCrop 작물모형을 이용하여 기후변화가 짐바브웨의 주곡인 옥수수의 수확량에 미치는 영향과 모형예측값의 불확실성을 분석하였다. 작물생육환경이 잘 유지된다고 가정하고 옥수수 잠재생산량을 모의한 결과 기준년도 (1970s)에 비해 2020s, 2050s and 2090s 년대에 평균 (범위) 8 % (6-9 %), 14 % (10-15 %) 및 16 % (11-17 %) 증가할 것으로 예측되었다. 같은 기간에 대한 물의 생산성은 평균 (범위) 7 % (4-13 %), 13 % (6-30 %) 및 15% (6-23 %) 증가할 것으로 예측되었다. 기온의 꾸준한 상승과 대기중 이산화탄소 농도 증가로 인한 시비효과로 인하여 미래에는 옥수수 단위 생산량과 물의 생산성이 증가할 것으로 예측되었으며 증가 범위를 보면 모형간의 변동성이 상당히 큰 것을 알 수 있었다. 본 연구결과는 기후변화가 짐바브웨의 옥수수 생산량에 미치는 영향과 변동성을 제시하므로서 장기적인 식량계획의 기초자료로 이용될 수 있을 것이다.

Biophysical Effects Simulated by an Ocean General Circulation Model Coupled with a Biogeochemical Model in the Tropical Pacific

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun;Kim, Ki-Young;Lee, Johan;Byun, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.469-480
    • /
    • 2017
  • Controversy has surrounded the potential impacts of phytoplankton on the tropical climate, since climate models produce diverse behaviors in terms of the equatorial mean state and El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude. We explored biophysical impacts on the tropical ocean temperature using an ocean general circulation model coupled to a biogeochemistry model in which chlorophyll can modify solar attenuation and in turn feed back to ocean physics. Compared with a control model run excluding biophysical processes, our model with biogeochemistry showed that subsurface chlorophyll concentrations led to an increase in sea surface temperature (particularly in the western Pacific) via horizontal accumulation of heat contents. In the central Pacific, however, a mild cold anomaly appeared, accompanying the strengthened westward currents. The magnitude and skewness of ENSO were also modulated by biophysical feedbacks resulting from the chlorophyll affecting El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$ in an asymmetric way. That is, El $Ni{\tilde{n}}o$ conditions were intensified by the higher contribution of the second baroclinic mode to sea surface temperature anomalies, whereas La $Ni{\tilde{n}}a$ conditions were slightly weakened by the absorption of shortwave radiation by phytoplankton. In our model experiments, the intensification of El $Ni{\tilde{n}}o$ was more dominant than the dampening of La $Ni{\tilde{n}}a$, resulting in the amplification of ENSO and higher skewness.

Application of the Ventilation Theory to the East Sea

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.8-16
    • /
    • 1997
  • The ventilation theory developed by Luyten, Pedlosky and Stommel (1983) is applied to the East Sea to understand the general circulation pattern of the Intermediate Water, especially the ventilated circulation beneath the Tsushima Warm Current. The original model is slightly modified such that it takes the inflow-outflow of the Tsushima Current into consideration. Results of the model indicate that for sufficiently strong Ekman pumping, the Intermediate Water circulates cyclonically by ventilation. The Intermediate Water subducts beneath the Tsushima Warm Water through the western boundary layer. Off the western boundary layer, it turns northward, outcrops to the north by passing the polar front and continues to flow northward until it finally is absorbed by the northern boundary layer. This result seems to be compatible with some recent observations. Over the ventilated area, the transport of the Tsushima Current is negligible and most transport occurs in the shadow area where the Intermediate layer is motionless indicating that, over the deep motionless layer, the two-layered vertical structure under consideration becomes substantially single-layered.

  • PDF

Development of Oceanic General Circulation Model for Climate Change Prediction (기후변화예측을 위한 해양대순환모형의 개발)

  • Ahn, Joong-Bae;Lee, Hyo-Shin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • In this study, Ocean General Circulation Model (OGCM) has been developed as a counterpart of Atmospheric General Circulation (AGCM) for the study of coupled ocean-atmosphere climate system. The oceanic responses to given atmospheric boundary conditions have been investigated using the OGCM. In an integration carried out over 100 simulated years with climatological monthly mean data (EXP 1), most parts of the model reached a quasi-equilibrium climate reproducing many of the observed large-scale oceanic features remarkably well. Some observed narrow currents, however, such as North Equatorial Counter Current, were inevitably distorted due to the model's relatively coarse resolution. The seasonal changes in sea ice cover over the southern oceans around Antarctica were also simulated. In an experiment (EXP 2) under boundary condition of 10-year monthly data (1982-1991) from NCEP/NCAR Reanalysis Project model properly reproduced major oceanic changes during the period, including El Ni$\tilde{n}$os of 1982-1983 and 1986-87. During the ENSO periods, the experiment showed eastward expansion of warm surface waters and a negative vertical velocity anomalies along' the equator in response to expansion of westerly current velocity anomalies as westerly wind anomalies propagated eastward. Simulated anomalous distribution and the time behavior in response to El Ni$\tilde{n}$o events is consistent with that of the observations. These experiments showed that the model has an ability to reproduce major mean and anomalous oceanic features and can be effectively used for the study of ocean-atmosphere coupling system.

  • PDF

A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression (다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구)

  • Hwang, Yoon-Jeong;Ahn, Joong-Bae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.214-226
    • /
    • 2007
  • Because precipitation is influenced by various atmospheric variables, it is highly nonlinear. Although precipitation predicted by a dynamic model can be corrected by using a nonlinear Artificial Neural Network, this approach has limits such as choices of the initial weight, local minima and the number of neurons, etc. In the present paper, we correct simulated precipitation by using a multiple linear regression (MLR) method, which is simple and widely used. First of all, Ensemble hindcast is conducted by the PNU/CME Coupled General Circulation Model (CGCM) (Park and Ahn, 2004) for the period from April to August in 1979-2005. MLR is applied to precipitation simulated by PNU/CME CGCM for the months of June (lead 2), July (lead 3), August (lead 4) and seasonal mean JJA (from June to August) of the Northeast Asian region including the Korean Peninsula $(110^{\circ}-145^{\circ}E,\;25-55^{\circ}N)$. We build the MLR model using a linear relationship between observed precipitation and the hindcasted results from the PNU/CME CGCM. The predictor variables selected from CGCM are precipitation, 500 hPa vertical velocity, 200 hPa divergence, surface air temperature and others. After performing a leave-oneout cross validation, the results are compared with the PNU/CME CGCM's. The results including Heidke skill scores demonstrate that the MLR corrected results have better forecasts than the direct CGCM result for rainfall.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction (여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Simulation Assessment of GCM Model in Case of Daily Precipitation and Temperature (일 강우량 및 기온 자료의 모의를 위한 GCM 모형의 평가)

  • Son, Minwoo;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.307-307
    • /
    • 2019
  • General Ciculation Model (GCM) 모형에 대한 평가를 본 연구에서 수행한다. 모형의 적용을 위해서는 국지적 일 강우량 및 기온자료를 이용한다. 31개의 GCM 모의를 통해 도출되는 결과가 성능 평가에서 활용되었다. 일 최대, 최소 기온와 강우량이 파키스탄 지역을 대상으로 모의되었다. 모의를 위해서는 Gridded 데이터가 적용되었으며 각각 Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation, Berkeley Earth Surface Temperature, Princeton Global Meteorological Forcing, Climate Prediction Centre에 해당된다. GCM의 순위를 결정하기 위해서는 Symmetrical Uncertainty 방법이 이용된다. 결과를 통해서 Gridded 데이터의 종류에 따라 가장 높은 효율을 나타내는 GCM의 공간 분포가 달라진다는 점을 확인하였다. 이러한 특성은 기온과 강우량 자료 모두에서 확인된다. 기온의 경우에는 Commonwealth Scientific and Industrial Research Organization, Australia-MK3-6-0과 Max Planck Institute-ESM-LR이 우수한 결과를 모의하는 것으로 나타났다. 반면 강우량의 경우에는 EC-Earth와 MIROC가 우수한 것으로 나타났다. 파키스탄 지역에서의 기온 및 강우량 자료의 합리적 반영을 위해서는 ACCESS1-3, CESM1-BGC, CMCC-CM, HadGEM2-CC, HadGEM2-ES, MIRCO5와 같은 6개 GCM을 이용하였을 때 다양한 기상 인자를 고려한 모의가 가능한 것으로 평가된다.

  • PDF

Evaluation of North Pacific Intermediate Water Simulated by HadGEM2-AO (HadGEM2-AO의 북태평양 중층수 모의 성능 평가)

  • Min, Hong Sik;Yim, Bo Young
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.265-278
    • /
    • 2015
  • We analyzed the North Pacific Intermediate Water (NPIW) that was simulated in 25 coupled general circulation models (CGCMs) using historical and Representative Concentration Pathway 4.5 (RCP4.5) scenario experiments of Coupled Model Intercomparison Project Phase 5 (CMIP5), focusing on the evaluation of the performance of HadGEM2-AO. A large inter-model diversity in salinity, density, and depth of the NPIW exists even though the multi-model ensemble mean (MME) is comparable to observations. It was found that the depth of the NPIW tends to be deeper in the models in which the NPIW is relatively saltier. HadGEM2-AO simulates the lightest NPIW having the lowest salinity at shallower depth, compared with other CGCMs. Future projections of the NPIW show that the temperature of the NPIW increases, but the density decreases in all CMIP5 models. It was shown that the salinity of the NPIW decreases in most models and the decrease tends to be larger in models simulating the lighter NPIW. The HadGEM2-AO projects moderate changes in the temperature and density of the NPIW out of the CMIP5 models.

Logistic Regression Model on the copyright licence diversification through interindividual Digital Contents distribution (개인간 디지털콘텐츠 유통상의 라이선스 다양화에 대한 로지스틱 회귀모형)

  • Suh, Hye-Sun
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.27-33
    • /
    • 2016
  • I would like to analyze the customers accommodation availability of the provisional 'smart board,' having specific mode and style, as a circulation platform of digital contents with using a statistic model in order to find a way and means to activate legal circulation of convergence individual products. The smart board means a circulation platform for both users' convenience and copyright protection, by being conveniently able to upload personal convergence digital contents or apply various licence to the uploaded contents according to the purpose of use. Under these premises of the smart board, this paper is going to focus on verifying to find out which factors, such as users' profile attributes, contents using behaviors, awareness of licence and etc, influence on the intention of using the smart board of general users by using a logistic regression model.