• Title/Summary/Keyword: gene replacement

Search Result 132, Processing Time 0.026 seconds

Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Protein phosphatase 2A (PP2A), a family of serine/threonine protein phosphatases, plays an important role in balancing the phosphorylation status of cellular proteins for regulating diverse biological functions in eukaryotic organisms. Despite intensive studies in mammals, limited information on its role is available in filamentous fungi. Here, we investigated the functional roles of genes for a putative B' delta regulatory subunit (FgPP2AR) and a catalytic subunit (FgPP2AC) of PP2A in a filamentous ascomycete, Fusarium graminearum. Molecular characterization of an insertional mutant of this plant pathogenic fungus allowed us to identify the roles of FgPP2AR. Targeted gene replacement and complementation analyses demonstrated that the deletion of FgPP2AR, which was constitutively expressed in all growth stages, caused drastic changes in hyphal growth, conidia morphology/germination, gene expression for mycotoxin production, sexual development and pathogenicity. In particular, overproduction of aberrant cylindrical-shaped conidia is suggestive of arthroconidial induction in the ${\Delta}FgPP2AR$ strain, which has never been described in F. graminearum. In contrast, the ${\Delta}FgPP2AC$ strain was not significantly different from its wild-type progenitor in conidiation, trichothecene gene expression, and pathogenicity; however, it showed reduced hyphal growth and no perithecial formation. The double-deletion ${\Delta}FgPP2AR;{\Delta}FgPP2AC$ strain had more severe defects than single-deletion strains in all examined phenotypes. Taken together, our results indicate that both the putative regulatory and catalytic subunits of PP2A are involved in various cellular processes for fungal development in F. graminearum.

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol

  • Li, Liangzhi;Yang, Tianyi;Guo, Weiqiang;Ju, Xin;Hu, Cuiying;Tang, Bingyu;Fu, Jiaolong;Gu, Jingsheng;Zhang, Haiyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.700-709
    • /
    • 2016
  • The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.

ermK Leader Peptide : Amino Acid Sequence Critical for Induction by Erythromycin

  • Kwon, Ae-Ran;Min, Yu-Hong;Yoon, Eun-Jeong;Kim, Jung-A;Shim, Mi-Ja;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1154-1157
    • /
    • 2006
  • The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E. coli ${\beta}-galactosidase$ reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not. The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.

Toxicogenomic analysis of Effects of Bisphenol A on Japanese Medaka fish using high density-functional cDNA microarray

  • Jiho Min;Park, Kyeong-Seo;Hong, Han-Na;Gu, Man-Bock
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.173-173
    • /
    • 2003
  • With the introduction of DNA microarrays, a high throughput analysis of gene expression is now possible as a replacement to the traditional time-consuming Southern-blot analysis. This cDNA microarray should be ahighly favored technology in the area of molecular toxicology or analysis of environmental stresses.In this study, therefore, we developed a novel cDNA microarray for analyzing stress-specific responses in japanese Medaka fish. In the design and fabrication of this stress specific functional cDNA microarray, 123 different genes in Medaka fish were selected from eighteen different stress responsive groups and spotted on a 25${\times}$75 mm glass surface. After exposure of the fish to bisphenol A which is the one of the well-known endocrine disrupting chemicals (EDCs), over 1 or 10 days, the responses of the DNA chip were found to show distinct expression patterns according to the mode of toxic actions from environmental toxicants. As a results, they showed specific gene expression pattern to bisphenol A, additionally, the chemical spesific biomarkers could be suggested based on the chip analysis data. Therefore, this chip can be used to monitor stress responses of unknown and/or known toxic chemicals using Medaka fish and may be used for the further development of biomarkers by utilizing the gene expression patterns for known contaminants.

  • PDF

Partial HPRT Deficiency Due to a Missense Mutation in the HPRT Gene (HPRT 유전자 돌연변이에 의한 HPRT 부분결핍증 1례)

  • Yang Ju-Hee;Park Min-Hyuk;Kim Deok-Soo;Shim Jae-Won;Shim Jung-Yeon;Jung Hye-Lim;Yoo Han-Wook;Park Moon-Soo
    • Childhood Kidney Diseases
    • /
    • v.7 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • An 8-month-old male infant presented with persistent, gross, orange-colored crystals in his urine. His physical and neurological development was normal. Laboratory study showed hyperuricemia, hyperuricosuria and urate crystaluria. He was determined to have partial hypoxanthine-guanine phosphoribosyl transferase(HPRT) deficiency. The molecular genetic analysis revealed a missense mutation in the patient's HPRT gene. By sequencing the patient's cDNA, we identified an A-to-G transition at nucleotide 239, resulting in the replacement of Aspartate with Glycine at amino acid 80 in the HPRT. To our knowledge, this mutation has not previously been reported. Our patient is now being placed on allopurinol therapy, and has had no problem since. Partial HPRT deficiency has been known to cause recurrent acute renal failure without the phenotypic features of Lesch-Nyhan syndrome. Therefore, we think that early diagnosis and treatment are very crucial in preventing acute renal failure.

  • PDF

High-Frequency Targeted Mutagenesis in Pseudomonas stutzeri Using a Vector-Free Allele-Exchange Protocol

  • Gomaa, Ahmed E.;Deng, Zhiping;Yang, Zhimin;Shang, Liguo;Zhan, Yuhua;Lu, Wei;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.335-341
    • /
    • 2017
  • The complexity of the bacterial recombination system is a barrier for the construction of bacterial mutants for the further functional investigation of specific genes. Several protocols have been developed to inactivate genes from the genus Pseudomonas. Those protocols are complicated and time-consuming and mostly do not enable easy construction of multiple knock-ins/outs. The current study describes a single and double crossover-recombination system using an optimized vector-free allele-exchange protocol for gene disruption and gene replacement in a single species of the family Pseudomonadaceae. The protocol is based on self-ligation (circularization) for the DNA cassette which has been obtained by overlapping polymerase chain reaction (Fusion-PCR), and carries an antibiotic resistance cassette flanked by homologous internal regions of the target locus. To establish the reproducibility of the approach, three different chromosomal genes (ncRNA31, rpoN, rpoS) were knocked-out from the root-associative bacterium Pseudomonas stutzeri A1501. The results showed that the P. stutzeri A1501 mutants, which are free of any plasmid backbone, could be obtained via a single or double crossover recombination. In order to optimize this protocol, three key factors that were found to have great effect on the efficiency of the homologous recombination were further investigated. Moreover, the modified protocol does not require further cloning steps, and it enables the construction of multiple gene knock-in/out mutants sequentially. This work provides a simple and rapid mutagenesis strategy for genome editing in P. stutzeri, which may also be applicable for other gram-negative bacteria.

From diagnosis to treatment of mucopolysaccharidosis type VI: A case report with a novel variant, c.1157C>T (p.Ser386Phe), in ARSB gene

  • Yoo, Sukdong;Lee, Jun;Kim, Minji;Yoon, Ju Young;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by the deficiency of arylsulfatase B due to mutations in the ARSB gene. Here, we report the case of a Korean female with a novel variant of MPS VI. A Korean female aged 5 years and 8 months, who is the only child of a healthy non-consanguineous Korean couple, presented at our hospital for severe short stature. She had a medical history of umbilical hernia and recurrent otitis media. Her symptoms included snoring and mouth breathing. Subtle dysmorphic features, including mild coarse face, joint contracture, hepatomegaly, and limited range of joint motion, were identified. Radiography revealed deformities, suggesting skeletal dysplasia. Growth hormone (GH) provocation tests revealed complete GH deficiency. Targeted exome sequencing revealed compound heterozygous mutations in the ARSB genes c.512G>A (p.Gly171Asp; a pathogenic variant inherited from her father) and c.1157C>T (p.Ser386Phe; a novel variant inherited from her mother in familial genetic testing). Quantitative tests revealed increased urine glycosaminoglycan (GAG) levels and decreased enzyme activity of arylsulfatase B. While on enzyme replacement therapy and GH therapy, her height increased drastically; her coarse face, joint contracture, snoring, and obstructive sleep apnea improved; urine GAG decreased; and left ventricular mass index was remarkably decreased. We report a novel variant-c.1157C>T (p.Ser386Phe)-of the ARSB gene in a patient with MPS VI; these findings will expand our knowledge of its clinical spectrum and molecular mechanisms.

Clinical Manifestations and Treatment in Korean Patients with X-Linked Agammaglobulinemia (성염색체 열성 범저감마글로불린혈증 환자의 임상 소견 및 치료)

  • Cho, Hannah;Kim, Joong Gon
    • Pediatric Infection and Vaccine
    • /
    • v.24 no.3
    • /
    • pp.152-159
    • /
    • 2017
  • Purpose: X-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by mutations in the Bruton's tyrosine kinase (Btk) gene. The aim of this study was to investigate the clinical manifestations, molecular features, and treatment status of XLA in Korean patients at Seoul National University Children's Hospital. Methods: Fourteen Korean boys with XLA showing serum agammaglobulinemia, non-detectable to less than 2% of peripheral B-cells, and mutation of the Btk gene were enrolled. We observed the clinical features, laboratory findings, status of treatment, and complications in these XLA patients. Results: All XLA patients had a history of recurrent bacterial infections before diagnosis, and 20% of them had a neutropenia. Of the XLA patients 35.7% had a family history of XLA and 75% of their mothers were carriers. Btk gene analysis showed variable gene mutations in Xq22 including 9 amino acid substitutions, 3 frameshifts, 1 premature stop codon, and 1 splice defect. After intravenous immunoglobulin replacement therapy, infection episodes decreased, but complications such as bronchiectasis and chronic sinusitis remained. Conclusions: In patients less than 4 years of age with recurrent infection, analysis of serum gamma globulin levels and the Btk gene are recommended for the early diagnosis of XLA and for the appropriate prevention of recurrent infection.

Effect of Estrogen on the Gestational Profiles in Gene Expression of Placental Lactogen I, II and Pit-i in the Rat Placenta (흰쥐 태반에서 Placental Lactogen I과 II 그리고 Pit-1의 유전자 발현에 미치는 에스트로겐의 영향)

  • 정진권;강성구;강해묵;이병주
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.115-121
    • /
    • 1996
  • To investigate gestational profiles in gene expression of placental lactogen I fpL4), PL-lI and Pit-1, RNA samples were extracted from the placentas of pregnant day 12 to 20 at 2 day intervals. Northern blots showed changes in gene expression of PL4, - 11 and Pit-i. Sizes of PL-l and -II mRNA were changed and amounts of PL-I, -H and Pit-1 mRNA increased during progress of gestation. To examine the effect of estrogen on the gene expression of PL-I, -Il and Pit-1, pregnant female rats were ovariectomized (OVX) and daily injected with estradiol (OVX + E). OVX markedly lowered the amount of PL4 and 41 mRNA, and shifted niRNA size from 1 kb to i 3 kb in PL-l mRNA and 0.6 kb to i kb in PL-ll mRNA, respectively. OVX had no effect on the mRNA size of Pit-1, but markedly attenuated Pit-1 mRNA level. Estrogen injection reversed the effect of OVX on the size-shift but not on the amount of PL4 and -Il mRNA. Replacement of E partially recovered OVX-induced inhibition of Pit-i mRNA level. Present results suggest that estrogen may play a pivotal role on the gene expression of PL-l and -Il such as alternative RNA splicing and/or polyadenylation, and Pit-1 may be involved in the gene expression of PL-l and 41 by estrogen.

  • PDF

Growth Suppression by Adenovirus-mediated Gene Transfer of p16/INK4a in Glioma Cell Lines (사람의 신경교종 세포주에서 아데노바이러스 벡터를 이용한 p16/INK4a 유전자 전달에 의한 종양성장 억제)

  • Kim, Mi-Suk;Kwon, Hee-Chung;Kang, Hee-Seog;Park, In-Chul;Rhee, Chang-Hun;Kim, Chang-Min;Lee, Choon-Taek;Hong, Seok-Il;Lee, Seung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.471-476
    • /
    • 2000
  • Objective : p16/INK4a, a kind of tumor suppressor genes, encodes a specific inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. This prevents the association of CDK4 with cyclin D1, and subsequently inhibits phosphorylation of retinoblastoma tumor suppressor protein(pRb), thus preventing exit from the G1 phase. According to previous reports, over 50% of glioma tissue and 80% of glioma cell lines have been demonstrated inactivation of p16/INK4a gene. The purpose of this study was to determine whether recombinant adenovirus-p16 virus is a suitable candidate for gene replacement therapy in cases of glioma. Methods : Three human glioma cell lines(U251MG, U87MG and U373MG) that express mutant p16 protein were used. Replication-deficient adenovirus was utilized as an expression vector to transfer exogenous p16 cDNA into the cells ; control cells were infected with the Ad-${\beta}$-gal expressing ${\beta}$-galactosidase. To monitor gene transfer and the expression of exogenous genes, we used Western Blotting analysis. Flow cytometry studies of cellular DNA content were performed to determine the cell cycle phenotype of the glioma cells before and after treatment. Results : We showed here that restoration of p16/INK4a expression in p16 negative U87MG, U251MG and partially deleted U373MG by Ad-CMV-p16 induced growth suppression in vitro. Flow cytometric study revealed that Ad-CMV-p16 infected U87MG cells were arrested during the G0-G1 phase of the cell cycle. Expression of p16 transferred by Ad-CMV-p16 in glioma cells was highly efficient and maintained for more than seven days. Conclusions : Our results suggest that Ad-CMV-p16 gene therapy strategy is potentially useful and warrants further clinical investigation for the treatment of gliomas.

  • PDF