• Title/Summary/Keyword: gene replacement

Search Result 131, Processing Time 0.024 seconds

Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement

  • Yong Joon-Hyoung;Byeon Woo-Hyeon
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.277-284
    • /
    • 2005
  • The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.

A Modified PCR-Directed Gene Replacements Method Using $lambda$-Red Recombination Functions in Escherichia coli

  • KIM SANG-YOON;CHO JAE-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1346-1352
    • /
    • 2005
  • We have developed a modified gene replacement method using PCR products containing short homologous sequences of 40- to 50-nt. The method required $\lambda$-Red recombination functions provided under the control of a temperature-sensitive CI857 repressor expressed from the $P_{lac}$ promoter in the presence of IPTG on an easily curable helper plasmid. The method promoted the targeted gene replacements in the Escherichia coli chromosome after shifting cultures of the recombinogenic host, which carries the helper plasmid, to $42^{\circ}C$ for 15 min. Since this method employs $\lambda$-Red recombination functions expressed from the easily curable helper plasmid, multiple rounds of gene replacements in the E. coli chromosome would be possible. The procedures described herein are expected to be widely used for metabolic engineering of E. coli and other bacteria.

Gene Therapy for Oral Cancer

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2007
  • New treatment approaches are needed to improve the effectiveness of oral cancer treatment, since surgical resection of the tumor in oral region causes various oral dysfunctions. The molecular biology of oral cancer has been progressively delineated. Concurrently, gene therapy techniques have been developed that allow targeting or replacement of dysfunctional genes in cancer cells, offering the potential to treat a wide range of cancer. Oral carcinoma is attractive target for gene therapy because of its accessibility. In this article, we review the current status of gene therapy as applied to oral carcinoma.

Evidence for VH Gene Replacement in Human Fetal B Cells

  • Lee, Jisoo;Cho, Young Joo;Lipsky, Peter E.
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • Background: In contrast to evidences of Ig H chain receptor editing in transformed cell lines and transgenic mouse models, there has been no direct evidence that this phenomenon occurs in human developing B cells. Methods: $V_HDJ_H$ rearrangements were obtained from genomic DNA of individual $IgM^-$ B cells from liver and $IgM^+B$ cells from bone marrow of 18 wk of gestation human fetus by PCR amplification and direct sequencing. Results: We found three examples of H chain receptor editing from $IgM^+$ and $IgM^-human$ fetal B cells. Two types of $V_H$ replacements were identified. The first involved $V_H$ hybrid formation, in which part of a $V_H$ gene from the initial VDJ rearrangement is replaced by part of an upstream $V_H$ gene at the site of cryptic RSS. The second involved a gene conversion like replacement of CDR2, in which another $V_H$ gene donated a portion of its CDR2 sequence to the initial VDJ rearrangement. Conclusion: These data provide evidence of receptor editing at the H chain loci in developing human B cells, and also the first evidence of a gene conversion event in human Ig genes.

Hemophilia (혈우병)

  • Yoo, Ki Young
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.8
    • /
    • pp.821-829
    • /
    • 2006
  • Hemophilia is the most common coagulation disorder. It has a long history. Hemophilia A is caused by FVIII gene mutation, and hemophilia B by FIX gene mutation. Those genes are located on X chromosome long arm. Bleedings in hemophiliacs predominantly occur in joints and muscles. Because those site are insufficient in tissue factor to induce hemostasis. Among joints knee, ankle and elbow are most frequently affected because their synovial structure is vulnerable to injury compared to other joints. Hemophilia is diagnosed with factor assay. Severe hemophilia is below 1% of FVIII : C, moderate between 1% and 5%, mild over 5%. Carrier detection and prenatal diagnosis have been conducted with RFLP-based linkage analysis and DNA sequencing. Mainstay of treatment is factor replacement therapy so far. Bleedings can be controlled by infusion of factor concentrates. Hemophilc arthropathy and muscle contracture are representative sequelae. Complications of facotor replacement therapy are inhibitor development and infections. Hemophiliacs with inhibitor should be managed with large dose factor concentrate, bypassing agent, ITI and immunosuppression. Ultimately, hemophilia could be cured by gene therapy.

Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee;Song, Min-Sun;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1070-1076
    • /
    • 2009
  • Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

Novel variants of IDS gene, c.1224_1225insC, and recombinant variant of IDS gene, c.418+495_1006+1304del, in Two Families with Mucopolysaccharidosis type II

  • Cheon, Chong Kun
    • Journal of Interdisciplinary Genomics
    • /
    • v.1 no.1
    • /
    • pp.6-9
    • /
    • 2019
  • In this report, the phenotypes of three patients from two families with mucopolysaccharidosis type II (MPS II) are compared: a novel variant and recombinant variant of IDS gene. The results of urine in patients showed a pronounced increase in glycosaminoglycan excretion with decreased iduronate-2-sulfatase enzyme activity in leukocyte, leading to a diagnosis of MPS II. A patient has a novel variant with 1 bp small insertion, c.1224_1225insC in exon 9, which caused frameshifts with a premature stop codon, and two patients have a recombination variant, c.418+495_1006+1304del, leading to the loss of exons 4, 5, 6, and 7 in genomic DNA, which is relatively common in Korean patients. They had different phenotypes even in the same mutation. The patients have now been enzyme replacement therapy with a significant decrease in glycosaminoglycan excretion. Further study on residual enzyme activity, as well as experience with more cases, may shed light on the relationship between phenotypes in MPS II and gene mutations.

An RNA Mapping Strategy to Identify Ribozyme-Accessible Sites on the Catalytic Subunit of Mouse Telomerase

  • Song, Min-Sun;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.32-35
    • /
    • 2007
  • Telomerase reverse transcriptase (TERT) is an enzymatic ribonucleoprotein that prolongs the replicative life span of cells by maintaining protective structures at the ends of eukaryotic chromosomes. Telomerase activity is highly up-regulated in 85-90% of human cancers, and is predominately regulated by hTERT expression. In contrast, most normal somatic tissues in humans express low or undetectable levels of telomerase activity. This expression profile identifies TERT as a potential anticancer target. By using an RNA mapping strategy based on a trans-splicing ribozyme library, we identified the regions of mouse TERT (mTERT) RNA that were accessible to ribozymes. We found that particularly accessible sites were present downstream of the AUG start codon. This mTERTspecific ribozyme will be useful for validation of the RNA replacement as cancer gene therapy approach in mouse model with syngeneic tumors.

AbSte7, a MAPKK Gene of Alternaria brassicicola, Is Involved in Conidiation, Salt/Oxidative Stress, and Pathogenicity

  • Xu, Houjuan;Zhang, Qianqian;Cui, Wenjuan;Zhang, Xiaofei;Liu, Weiyang;Zhang, Li;Islam, Md. Nurul;Baek, Kwang-Hyun;Wang, Yujun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1311-1319
    • /
    • 2016
  • Alternaria brassicicola (Schwein.) invades Brassicaceae and causes black spot disease, significantly lowering productivity. Mitogen-activated protein kinases (MAPKs) and their upstream kinases, including MAPK kinases (MAPKKs) and MAPKK kinases (MAPKKK), comprise one of the most important signaling pathways determining the pathogenicity of diverse plant pathogens. The AbSte7 gene in the genome of A. brassicicola was predicted to be a homolog of yeast Ste7, a MAPKK; therefore, the function was characterized by generating null mutant strains with a gene replacement method. AbSte7 replacement mutants (RMs) had a slower growth rate and altered colony morphology compared with the wild-type strain. Disruption of the AbSte7 gene resulted in defects in conidiation and melanin accumulation. AbSte7 was also involved in the resistance pathways in salt and oxidative stress, working to negatively regulate salt tolerance and positively regulate oxidative stress. Pathogenicity assays revealed that AbSte7 RMs could not infect intact cabbage leaves, but only formed very small lesions in wounded leaves, whereas typical lesions appeared on both intact and wounded leaves inoculated with the wild-type strain. As the first studied MAPKK in A. brassicicola, these data strongly suggest that the AbSte7 gene is an essential element for the growth, development, and pathogenicity of A. brassicicola.