• Title/Summary/Keyword: gene probe

Search Result 422, Processing Time 0.028 seconds

Aspergillus niger로 부터 $\alpha$-glucosidase 발현억제 형질전환체의 분리

  • 이동건;이진영;서영배
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.427-429
    • /
    • 1996
  • We have already cloned an extracellular $\alpha$-glucosidase gene from Aspergillus niger with oligonucleotide probe synthesized on the basis of the peptide sequences determined previously. The DNA sequence revealed an open reading frame of 895 amino acids split by three introns. We are attempting to construct an A. niger strain deficient in the $\alpha$-glucosidase enzyme activity, which would be useful for the glucoamylase production without contamination by the industrially undesirable $\alpha$-glucosidase. For destruction of the $\alpha$-glucosidase gene, we try to make transformations. A cloned partial $\alpha$-glucosidase gene was introduced into Aspergillus niger, and transformants with suppressed $\alpha$-glucosidase activity were isolated. The transformants were cultured on YPD medium which contained Hygromycin B at 30$\circ$C. The activity of $\alpha$-glucosidase of the suppressed transformants was compared to that of wild type activity. As shown by southern-hybridization, we detected that the transformant was a heterocaryon.

  • PDF

Molecular Cloning of Serratia rnarcescens Metalloprotease Gene into Escherichia coli (Serratia marcescens Metalloprotease 유전자의 대장균에로의 클로닝)

  • 김기석;이창원;이상열;이병룡;신용철
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.280-288
    • /
    • 1992
  • Molecular cloning of metalloprotease gene from Serratia marcescens ATCC 21074 into Escherichia coli JM109 was carried out. Chromosomal DNA of S. marcescens was completely digested with Hind111 and southern hybridization with a synthetic oligonucleotide probe revealed that a 50 KD metalloprotease gene was contained in 4.0 Kb chromosomal DNA fragment, 4.0 Kb chromosomal DNA fragments eluted from agarose gel were ligated with pUC19 and transformed into E. coli JM109. Nine positive clones were obtained from about $1\times 10^3$ transformants by colony hybridization. Their recombinant plasmids, pSPl and pSP2 have same chromosomal DNA fragments in pUC19 in opposite-orientations. When cloned metalloprotease gene was expressed in E. coli, about 52 KD precursor protein of metalloprotease was detected by western blot analysis from E. coli harboring a recombinant plasmid pSP2. Plasmid pSP2 showed no protease activities in E. coli but overproduced the active metalloprotease in S. rnarcescens ATCC 27117.

  • PDF

Microarrays for the Detection of HBV and HDV

  • Sun, Zhaohui;Zheng, Wenling;Zhang, Bao;Shi, Rong;Ma, Wenli
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.546-551
    • /
    • 2004
  • The increasing pace of development in molecular biology during the last decade has had a direct effect on mass testing and diagnostic applications, including blood screening. We report the model Microarray that has been developed for Hepatitis B virus (HBV) and Hepatitis D virus (HDV) detection. The specific primer pairs of PCR were designed using the Primer Premier 5.00 program according to the conserved regions of HBV and HDV. PCR fragments were purified and cloned into pMD18-T vectors. The recombinant plasmids were extracted from positive clones and the target gene fragments were sequenced. The DNA microarray was prepared by robotically spotting PCR products onto the surface of glass slides. Sequences were aligned, and the results obtained showed that the products of PCR amplification were the required specific gene fragments of HBV, and HDV. Samples were labeled by Restriction Display PCR (RD-PCR). Gene chip hybridizing signals showed that the specificity and sensitivity required for HBV and HDV detection were satisfied. Using PCR amplified products to construct gene chips for the simultaneous clinical diagnosis of HBV and HDV resulted in a quick, simple, and effective method. We conclude that the DNA microarray assay system might be useful as a diagnostic technique in the clinical laboratory. Further applications of RD-PCR for the sample labeling could speed up microarray multi-virus detection.

Partial Sequence of the Bovine (Bos taurus coreanae) Myogenic Factor Encoding Gene MyoD

  • Kim, H.S.;Park, E.W.;Yoon, D.H.;Kim, H.B.;Cheong, I.C.;Cho, B.W.;Im, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.689-694
    • /
    • 1999
  • This experiment was carried out to isolate the partial bovine (Bos Taurus coreanae) myogenic factor encoding gene, MyoD, using the rat myogenic factor (MyoD) gene sequence and to compare the gene sequence between another myogenic factor (Myf 5) and MyoD gene of the bovine. To make the probe and isolate the MyoD gene, PCR was performed to amplify rat and bovine MyoD gene including exon I, II and intron I. The homology between mouse and bovine MyoD is high; bovine MyoD gene shows 17 different gene sequence region compared to rat MyoD. Among those, two regions have significant differences; one is the exon I part between 2834 and 2850 bp, the other is intron part between 3274 and 3303 bp of the mouse. At this region homology was 40% in the former and 50% in the latter. Homology between bovine MyoD and Myf5 was 83% in the exon 1. Especially exon I in the Myf5 602-617 bp and 651-683 bp have significant differences. These results suggest that MyoD gene have a similar gene structure in mouse and bovine and MyoD and Myf5 of the bovine, at least in part, have a similar expression and activity.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

A novel mutation in XLRS1 gene in X-linked juvenile retinoschisis

  • Kim, Da Hyun;Heo, Sun Hee;Seo, Go Hun;Oh, Arum;Kim, Taeho;Kim, Gu-Hwan;Yoon, Young Hee;Yoo, Han-Wook;Lee, Beom Hee
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.13-16
    • /
    • 2018
  • X-linked juvenile retinoschisis (XLRS) is characterized by the progressive loss of visual acuity and vitreous hemorrhage. XLRS is caused by a mutation of retinoschisin 1 (RS1) gene at Xp22.13. In the current report, a 2-year-old Korean patient with XLRS was described. The germline deletion of exon 1 was identified in the RS1 gene. Considering X-linked inheritance pattern, validation of a carrier state of a patient's mother is important for the genetic counseling of other family members and for the future reproductive plan. To confirm the carrier state of his mother, the multiplex ligation-dependent probe amplification analysis was done using peripheral leukocytes and found the heterozygous deletion of exon 1 in his mother.

Molecular Cloning of the Gene for $\alpha$-Acylamino-$\beta$-lactam Acylhydrolase from Acetobacter turbidans by Immunochemical Detection Method (면역화학적 방법에 의한 Acetobacter turbidans의 $\alpha$-Acylamino-$\beta$-lactam Acylhydrolase의 유전자 클론화)

  • Nam, Doo-Hyun;Dewey D.Y. Ryu
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.363-368
    • /
    • 1988
  • Molecular cloning of gene for $\alpha$-acylamino-$\beta$-lactam acylhydrolase (ALAH) III from Acetobacter turbidans has been attempted by immunochemical detection method, in which polyclonal antibody from mouse Balb/c against this enzyme was employed as a probe. As a cloning vector, λ gtll was chosen for this purpose. Two positive clones has been selected from genomic libraries of A. turbidans, which had somewhat different binding affinities on anti-ALAH III umm and anti-$\beta$-galactosidase. By restriction analysis, both clones has been turned out to lose one of EeoRI sites. From these results, it concluded that deletion of DNA between lacZ gene and inserted DNA has occurred during replication of these clones in host cells.

  • PDF

Studies on the Escherichia coli Hemolysin Antigenic Sites and Functional Sites for the Hemolysin Vaccine Development (Hemolysin 백신 개발을 위한 요로계 감염 대장균들의 Hemolysin Antigenic Sites, Functional Sites 상동성 연구)

  • 지근억;백광현
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.301-310
    • /
    • 1992
  • This work was performed to investigate the possibility of using J96 hemolysin(Hly, Hly A) vaccine against urinary tract infecting Escherichia coli. Based on the known sequence of J96 hemolysin which was originally isolated from a pyelonephritis patient, ten 20-mer oligonucleotide probes were synthesized. Radioactive labelled 8 probes showed positive colony blots against most of the hemolysin producing wild type E. coli, while HA484 and HA661 showed 28.3, 71.7% positive blots, respectively. This result means that hemolysin genes are highly conserved. Also, 12 anti-Hly MABs(monoclonal antibodies) showed more than 90% positive immunoblots against secreted hemolysin from wild type E. coli. Especially, the result that MAB132 neutralized hemolysin from all of the wild type E. coli augments the idea that hemolysin will be effective as a vaccine.

  • PDF

Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene

  • Jinuk Jeong;Yunseok Oh;Junhyeon Jeon;Dong-Heon Baek;Dong Hee Kim;Kornsorn Srikulnath;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.13.1-13.8
    • /
    • 2023
  • Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria 'Porphyromonas gingivalis', and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)-based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis-specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.