• 제목/요약/키워드: gene overexpression

검색결과 667건 처리시간 0.031초

Effect of ganglioside GD3 synthase gene expression on VSMC proliferation via ERK1/2 pathway, cell cycle progression and MMP-9 expression

  • Lee, Young-Choon;Kim, Cheorl-Ho
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2004년도 생명공학 실용화를 위한 비젼
    • /
    • pp.81-90
    • /
    • 2004
  • Sialic acid containing glycosphingolipids (gangliosides) have been implicated in the regulation of various biological phenomena such as atherosclerosis. Recent report suggeststhat exogenously supplied disialoganglioside (GD3) serves a dual role in vascular smooth muscle cells (VSMC) proliferation and apoptosis. However, the role of the GD3 synthase gene in VSMC responses has not yet been elucidated. To determine whether a ganglioside is able to modulate VSMC growth. the effect of overexpression of the GD3 synthase gene on DNA synthesis was examined. The results show that the overexpression of this gene has a potent inhibitory effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of PDGF. The suppression of the GD3 synthase gene was correlated with the down-regulation of cyclinE/CDK2. the up-regulation of the CDK inhibitor p21 and blocking of the p27 inhibition,whereas up-regulation of p53 as the result of GD3 synthase gene expression was not observed. Consistently, blockade of GD3 function with anti-GD3 antibody reversed VSMC proliferation and cell cycle proteins. The expression of the CD3 synthase gene also led to the inhibition of TNF--induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, GD3 synthase gene expression strongly decreased MMP-9 promoteractivlty in response to TNF-. This inhibition was characterized by the down-regulation of MMP-9,which was Iranscriptionally regulated at NF-B and activation protein-1 (AP-1) sites in the MMP-9promoter Finally, the overexpression of MMP-9 in GD3 synthase transfectant cells rescued VSMC proliferation. However MMP-2 overexpression was not affected the cell proliferation. These findings suggest that the fl13 synthase gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  • PDF

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.

Overexpression of starch branching enzyme 1 gene improves eating quality in japonica rice

  • Sun, Ming-Mao;Lee, Hye-Jung;Abdula, Sailila E.;Jee, Moo-Geun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • 제40권2호
    • /
    • pp.88-101
    • /
    • 2013
  • Eating quality of rice attracts more and more attention from rice-eating consumers in the recent years. Thus, improvement of eating quality of cooked rice has become one of the most important breeding goals in japonica rice. Here, the generation of transgenic japonica rice with improved eating quality and grain yield are reported. Overexpression of OsSbe1 gene encoding rice starch branching enzyme 1 was driven by 35S promoter. Eleven independent homozygous $T_3$ transgenic lines were characterized and had shown higher palatability (71.2 ~ 72.6) than wild type Gopum (70.4). Moreover, transgenic rice lines showed an increase in 1000-grain weight and number of spikelets per panicle compared with the wild type. The yield of milled rice was 562.8 ~ 596.7 kg/10a in eight $T_3$ lines, but 542.1 kg/10a in wild type. Gene expression analyses in mRNA transcription and enzyme activity levels suggest that improved eating quality is due to the up-regulation of OsSbe1 gene.

Cloning and Overexpression of Methylcatechol 2, 3-Dioxygenase Gene from Toluene-Degrading Pseudomonas putida mt-2(pWWO)

  • Lee, Jeong-Rai;Min, Kyung-Rak;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • 제15권4호
    • /
    • pp.360-364
    • /
    • 1992
  • Methylcatechol 2, 3-dioxygenase encoded in pWWO megaplasmid of Pseudomonas putida mt-2 has been cloned and overexpressed in Escherichia coli. This enzyme gene has been localized inside 2. 3-kb XhoI fragment derived from the pWWO megaplasmid. Analysis of enzyme activity and SDS-PAGE showed that the cloned methylcatechol 2, 3-dioxygenase gene in E. coli was about 100 fold overexpressed compared with the parental gene in P. putida mt-2 (pWWO). The cloned enzyme exhibited higher ring-fission activity to catechol than catechol derivatives including 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol.

  • PDF

Amplification of the UQCRFS1 Gene in Gastric Cancers

  • Jun, Kyong-Hwa;Kim, Su-Young;Yoon, Jung-Hwan;Song, Jae-Hwi;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • 제12권2호
    • /
    • pp.73-80
    • /
    • 2012
  • Purpose: The specific aim of this study is to unravel a DNA copy number alterations, and to search for novel genes that are associated with the development of Korean gastric cancer. Materials and Methods: We investigated a DNA copy number changes in 23 gastric adenocarcinomas by array-comparative genomic hybridization and quantitative real-time polymerase chain reaction analyses. Besides, the expression of UQCRFS1, which shows amplification in array-CGH, was examined in 186 gastric cancer tissues by an immunohistochemistry, and in 9 gastric cancer cell lines, as well as 24 gastric cancer tissues by immunoblotting. Results: We found common gains at 48 different loci, and a common loss at 19 different loci. Amplification of UQCRFS1 gene at 19q12 was found in 5 (21.7%) of the 23 gastric cancers in an array-comparative genomic hybridization and DNA copy number were increased in 5 (20.0%) out of the 25 gastric cancer in quantitative real-time polymerase chain reaction. In immunohistochemistry, the overexpression of the protein was detected in 105 (56.5%) out of the 186 gastric cancer tissues. Statistically, there was no significant relationship between the overexpression of UQCRFS1 and clinicopathologic parameters (P>0.05). In parallel, the overexpression of UQCRFS1 protein was confirmed in 6 (66.7%) of the 9 gastric cancer cell lines, and 12 (50.0%) of the 24 gastric cancer tissues by immunoblotting. Conclusions: These results suggest that the overexpression of UQCRFS1 gene may contribute to the development and/or progression of gastric cancer, and further supported that mitochondrial change may serve as a potential cancer biomarker.

Brevibacterium lactofermentum에서 ddh 유전자의 Overexpression이 $_L-Lysine$ 생산에 미치는 영향 (Influence on Lysine Production by Overexpression of the ddh Gene in a Lysine-producing Brevibacterium lactofermentum)

  • 박선희;김옥미;김현정;배준태;장종선;이갑랑
    • 한국식품과학회지
    • /
    • 제31권1호
    • /
    • pp.224-230
    • /
    • 1999
  • $_L-Lysine$ 발효산업에 이용되고 있는 B. lactofermentum의 L-lysine 생합성은 succinylase 경로와 dehydrogenase 경로를 통하여 일어난다. 특히 lysine 생산 균주에 부가적으로 존재하는 dehydrogenase 경로는 lysine 생합성에 있어서 필수적인 경로로 작용하며 이때 meso-DAP-dehydrogenase (DDH)를 암호화하는 ddh gene이 관여한다. 그러므로 B. lactofermentum의 lysine 발효에 있어서 ddh gene의 over expression에 의한 lysine 생성량을 비교 조사하기 위하여, shuttle vector pEB1 및 pJC1으로 ddh gene을 삽입하여 재조합 plasmid pRK1 및 pRK31을 구축하였고 이를 B. lactofermentum으로 도입시켜 DDH 활성을 측정한 결과 pRK1을 함유한 균주는 대조균주보다 7배 정도, pRK31을 함유한 균주는 14배 정도 증가하였다. 또한 Shuttle vector를 함유한 대조균주와 재조합 plasmid를 함유한 균주간의 성장 비교에서는 서로 비슷한 수준을 나타내었으며 플라스크 배양에서 lysine 생성량의 비교 분석에서는 재조합 plasmid를 함유한 균주의 경우 48시간 이후부터 대조균주보다 lysine 생성량이 증가하기 시작하여 72시간때에는 최대치를 나타내었으며 그 이후는 오히려 감소하였다. 최대치를 나타낸 72시간 때의 lysine 생성량은 대조균주가 4.38g/L를 나타내었으며 pRK1 및 pRK31을 함유한 균주는 각각 5.34g/L 및 5.21 g/L이었다. 이상의 결과로 미루어 볼 때 B. lactofermentum내에서 ddh gene의 증폭에 의한 lysine 생성량은 pRK1 및 pRK31에서 대조균주보다 각각 20% 및 19% 증가하였다. 또한 발효조 배양에서의 lysine 생성량도 재조합 균주가 대조균주보다 23% 정도 증가를 나타내어 B. lactofermentum에서 ddh gene의 증폭으로 lysine 생성량이 증가하였음을 확인하였다.

  • PDF

Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli

  • Kim, Yool;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.791-793
    • /
    • 2009
  • Escherichia coli RNase P is composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). Since both subunits are assembled in a 1:1 ratio, expression of M1 RNA and C5 protein should be coordinately regulated for RNase P to be efficiently synthesized in the cell. However, it is not known yet how the coordination occurs. In this study, we investigated how overexpression of C5 protein affects expression of the rnpB gene encoding M1 RNA, using a lysogenic strain, which carries an rnpB-lacZ transcription fusion. Primer extension analysis of rnpB-lacZ fusion transcripts showed that the overexpression of C5 protein increased the amount of the fusion transcripts, suggesting that rnpB expression increases with the increase of intracellular level of C5 protein.

Involvement of Cathepsin D in Apoptosis of Mammary Epithelial Cells

  • Seol, M.B.;Bong, J.J.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권8호
    • /
    • pp.1100-1105
    • /
    • 2006
  • During involution of the mammary gland after the lactation period, the gland undergoes an extensive epithelial cell death. In our previous study, overexpression of an extracellular proteinase inhibitor (Expi) gene accelerated apoptosis of mammary epithelial cells. Here we found that expression of the cathepsin D gene was induced in the Expi-overexpressed apoptotic cells. To understand the role of cathepsin D in apoptosis, we transfected cathepsin D gene into mammary epithelial HC11 cells and established the stable cell lines overexpressing the cathepsin D gene. We found that overexpression of the cathepsin D gene partially induced apoptosis of mammary epithelial cells. Expression patterns of the cathepsin D gene were examined in mouse mammary gland at various reproductive stages. Expression of the cathepsin D gene was increased during involution stages compared to lactation stages, and highest expression levels were shown at involution on day 4. We also examined expression of the cathepsin D gene in various mouse tissues. Mammary gland at involution on day 2 showed highest levels of cathepsin D mRNA of the mouse tissues that we examined. Liver tissues showed high levels of cathepsin D expression. These results demonstrate that cathepsin D may contribute to the apoptotic process of mammary epithelial cells.

클로닝된 Bacillus thuringiensis subsp. kurstaki HDI 살충성 단백질 유전자의 대장균에서의 발현 (Expression in Eschepichia coli of a Cloned Bacillus thuringiensis subsp. kurstaki HDI In-secticidal Protein Gene.)

  • 황성희;차성철;유관희;이형환
    • 한국미생물·생명공학회지
    • /
    • 제26권6호
    • /
    • pp.497-506
    • /
    • 1998
  • Bacillus thurintensis subsp. kurstaki HD1 살충성 단백질 ICP 유전자가 있는 NdeI 단편 3.856 kb를 클로닝하여 제조한 pHLN2-80(-) 클론이 pHLN1-80(-)에 비해서 대장균에서 ICP발현량이 과다발현되는 현상을 규명하고자 하였다. 본 연구에서는 상기의 pHLN2-80(+) 클론의 발현량을 조절하는 원인을 규명하기 위하여 ICP의 아미노산 서열은 변화되지 않는 범위 내에서 pHLN1-80(+) 클론에 있는 Plac프로모터와 ICP유전자 프로모터의 일부인 -80 bp프로모터의 염기서열, 전사 개시점과 종결부위의 변이가 ICP유전자발현에 미치는 영향을 조사하였다. pHLN1-80(+)에 5'-말단에 존재하는 -80 bp 프로모터만을 보유한 pHLNK-80 클론은 ICP 생산은 매우 저조하였다. Plac프로모터와 -80 bp 프로모터의 구조 골격을 일부 변이 시킨 pHLNF1-80클론의 ICP생산량은 pHLN2-80(-)가 생산한 양보다는 낮아서 과다발현이 안되었다. Plac프로모터 상류를 약 350bp을 제거하여 만든 클론 pHLND2-80의 ICP 생산량은 모클론인 pHLN2-80(-) 보다 매우 높게 과다발현 되었다. ICP 유전자의 과다발현 현상에 대한 전사 개시점과 전사종결 부위의 역할을 알아보기 위해서 -72bp ICP유전자프로모터를 갖는 클론 pHLD1-72는 재조합 클론 pHLN2-80(-)가 생산한 양보다 적은 양의 ICP을 생성하였고, 클론 pHLD2-72는 재조합 클론 pHLN2-80(-)보다 적은 ICP을 발현하여 과다 발현되었으며, 클론 pHLN2-72는 모클론인 pHLN2-80(-)보다 약간 높은 ICP 생산량을 보여 과다발현되었다. 클론 pHLN2-72를증식하여 파쇄액을 만든 후에 Bombyx mori유충에 대한 살충력 검사에서 클론 pHLN2-72이 생산한 ICP는 pHLN1-80(+)이 생산한 ICP보다 약 90배의 살충력을 보였다. SDS-PAGE와 Western blot 분석에서도 클론 pHLN2-72는 재조합 클론 pHLN2-80(-)보다 약간 높게 ICP가 생성이 되었었다. 이상의 결과는 과다발현에 Plac프로모터와 종결부위가 반드시 필요하며, -72 bp ICP 프로모터가 -80 bp 프로모터보다 과다발현률이 높았으며, ICP 유전자는 반드시 Plac프로모터의 전사 방향에 역방향으로 삽입이 되어야 하는 것으로 나타났다.

  • PDF

인삼에서 Farnesyl Diphosphate Synthase 과발현이 진세노사이드 생합성에 미치는 영향 (Overexpression of Farnesyl Diphosphate Synthase by Introducing CaFPS Gene in Panax ginseng C. A. Mey.)

  • 박홍우;김옥태;현동윤;;김장욱;김영창;방경환;차선우;최재을
    • 한국약용작물학회지
    • /
    • 제21권1호
    • /
    • pp.32-38
    • /
    • 2013
  • FPS (farnesyl diphosphate synthase) plays an essential role in organ development in plants. However, FPS has not previously been identified as a key regulatory enzyme in triterpene biosynthesis. In order to investigate the effect of FPS on ginsenosides biosynthesis, we over-expressed FPS of Centella asiatica (CaFPS) in Panax giseng adventitious roots. PCR analysis showed the integrations of the CaFPS and hygromycin phosphotransferase genes and we ultimately selected three lines. The result of Southern blot analysis demonstrated the introduction of the CaFPS gene into genome of ginseng. In addition, the results of RT-PCR analysis revealed that CaFPS gene overexpression induced an accumulation of its transcription in the ginseng adventitious roots. To determine whether or not the overexpression of the CaFPS gene contributes to the downstream gene expression associated with triterpene biosynthesis, the level of mRNAs was analyzed by real-time PCR. The result showed that no differences were detected in any expression of all genes. To determine quantitatively the content of ginsenosides in transgenic ginseng adventitious roots, HPLC analysis was conducted. The content of total 7 ginsenosides was increased to 1.8, 1.4, and 1.7 times than that of the controls, respectively. This indicated that the overexpression of CaFPS in ginseng adventitious roots causes an increase in ginsenoside content, although down stream genes of FPS gene were suppressed by CaFPS overexpression.