• Title/Summary/Keyword: gene network

Search Result 558, Processing Time 0.058 seconds

진화연산에 기반한 유전자 발현 데이터로부터의 유전자 상호작용 네트워크 구성 (Construction of Gene Interaction Networks from Gene Expression Data Based on Evolutionary Computation)

  • 정성훈;조광현
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1189-1195
    • /
    • 2004
  • This paper investigates construction of gene (interaction) networks from gene expression time-series data based on evolutionary computation. To illustrate the proposed approach in a comprehensive way, we first assume an artificial gene network and then compare it with the reconstructed network from the gene expression time-series data generated by the artificial network. Next, we employ real gene expression time-series data (Spellman's yeast data) to construct a gene network by applying the proposed approach. From these experiments, we find that the proposed approach can be used as a useful tool for discovering the structure of a gene network as well as the corresponding relations among genes. The constructed gene network can further provide biologists with information to generate/test new hypotheses and ultimately to unravel the gene functions.

GSnet: An Integrated Tool for Gene Set Analysis and Visualization

  • Choi, Yoon-Jeong;Woo, Hyun-Goo;Yu, Ung-Sik
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.133-136
    • /
    • 2007
  • The Gene Set network viewer (GSnet) visualizes the functional enrichment of a given gene set with a protein interaction network and is implemented as a plug-in for the Cytoscape platform. The functional enrichment of a given gene set is calculated using a hypergeometric test based on the Gene Ontology annotation. The protein interaction network is estimated using public data. Set operations allow a complex protein interaction network to be decomposed into a functionally-enriched module of interest. GSnet provides a new framework for gene set analysis by integrating a priori knowledge of a biological network with functional enrichment analysis.

NGSEA: Network-Based Gene Set Enrichment Analysis for Interpreting Gene Expression Phenotypes with Functional Gene Sets

  • Han, Heonjong;Lee, Sangyoung;Lee, Insuk
    • Molecules and Cells
    • /
    • 제42권8호
    • /
    • pp.579-588
    • /
    • 2019
  • Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.

Linear Dynamic Model of Gene Regulation Network of Yeast Cell Cycle

  • Changno Yoon;Han, Seung-Kee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.77-77
    • /
    • 2003
  • Gene expression in a cell is regulated by mutual activations or repressions between genes. Identifying the gene regulation network will be one of the most important research topics in the post genomic era. We propose a linear dynamic model of gene regulation for the yeast cell cycle. A small gene network consisting of about 40 genes is reconstructed from the analysis of micro-array gene expression data of yeast S. cerevisiae published by P. Spellman et al. We show that the network construction is consistent with the result of the hierarchical cluster analysis.

  • PDF

Reverse Engineering of a Gene Regulatory Network from Time-Series Data Using Mutual Information

  • Barman, Shohag;Kwon, Yung-Keun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.849-852
    • /
    • 2014
  • Reverse engineering of gene regulatory network is a challenging task in computational biology. To detect a regulatory relationship among genes from time series data is called reverse engineering. Reverse engineering helps to discover the architecture of the underlying gene regulatory network. Besides, it insights into the disease process, biological process and drug discovery. There are many statistical approaches available for reverse engineering of gene regulatory network. In our paper, we propose pairwise mutual information for the reverse engineering of a gene regulatory network from time series data. Firstly, we create random boolean networks by the well-known $Erd{\ddot{o}}s-R{\acute{e}}nyi$ model. Secondly, we generate artificial time series data from that network. Then, we calculate pairwise mutual information for predicting the network. We implement of our system on java platform. To visualize the random boolean network graphically we use cytoscape plugins 2.8.0.

Detecting Genetic Association and Gene-Gene Interaction using Network Analysis in Case-Control Study

  • Jin, Seo-Hoon;Lee, Min-Hee;Lee, Hyo-Jung;Park, Mi-Ra
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.563-573
    • /
    • 2012
  • Various methods of analysis have been proposed to understand the gene-disease relation and gene-gene interaction effect for a disease through comparison of genotype in case-control study. In this study, we proposed the method to detect a genetic association and gene-gene interaction through the use of a network graph and centrality measures that are used in social network analysis. The applicability of the proposed method was studied through an analysis of real genetic data.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.