• Title/Summary/Keyword: gene interaction

Search Result 761, Processing Time 0.021 seconds

How Does Problem Epistasis Affect the performance of Genetic Algorithm? (문제 상위는 유전 알고리즘의 성능에 어떤 영향을 미치는가?)

  • Yu, Dong-Pil;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.251-258
    • /
    • 2018
  • In mathematics and computer science, an optimization problem is the problem of finding the best solution from feasible ones. In the context of genetic algorithm, the difficulty of an optimization problem can be explained in terms of problem epistasis. In biology, epistasis means that the phenotype of a gene is suppressed by one or more genes, but in an evolutionary algorithm it means the interaction between genes. In this paper, we experimentally show that problem epistasis and the performance of genetic algorithm are closely related. We compared problem epistasis (One-Max, Royal Road, and NK-Landscape) using a framework that quantifies problem epistasis based on Shannon's information theory, and could show that problem becomes more difficult as problem epistasis grows. In the case that a genetic algorithm finds the optimal solution, performance is compared through the number of generations, otherwise through the ratio of the fitness of the optimal solution to that of the best solution.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Effects of exhaustive exercise on ER Stress of skeletal muscle and adipose tissue in rats

  • In, Dae-Hyeong;Woo, Sang-Koo;Kim, Ki-Hoon
    • Korean Journal of Exercise Nutrition
    • /
    • v.17 no.2
    • /
    • pp.35-42
    • /
    • 2013
  • The purpose of this study was to identify the effects of gene expression of endoplasmic reticulum (ER) stress in skeletal muscle and adipose tissue on acute exhaustive exercise. Thirty-five Sparague Dawley male rats were divided into a control group (CON, n = 7) and a exhaustive exercise group (n = 28), immediately after exhaustive exercise group (n = 7), after 30 minutes exhaustive exercise group (n = 7), after 60 minutes exhaustive exercise group (n = 7), after 180 minutes exhaustive exercise group (n = 7). As a result, changes in the composition of the blood serum triglyceride concentration increased significantly in immediately after exhaustive exercise group, On the contrary, blood glucose showed a significantly decreased (p < .05). Homeostasis of energy metabolism due to exhaustive exercise as a result of the mechanism of action of skeletal muscle in the glycogenolysis and absorption, which indicates that the process of means. On the other hand, a result of examining changes in endoplasmic reticulum stress-related proteins in skeletal muscle and adipose tissue, JNK1 except in skeletal muscle BiP, ATF4, CHOP, GRP78 mRNA increased significantly immediately after exercise, and after 30 minutes returned to normal levels that could be confirmed (p < .05). BiP mRNA in adipose tissue show a similar pattern and skeletal muscle increased significantly immediately after exercise, but other changes in the specificity of the endoplasmic reticulum stress-related proteins also did not appear. In conclusion, Exercise applies and exercise training duration and exercise intensity as well as research on the interaction of the endoplasmic reticulum stress-related genes should be study continuously, to be more clear.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

Transcriptome Analysis of the Striatum of Electroacupuncture-treated Naïve and Ischemic Stroke Mice

  • Hong Ju Lee;Hwa Kyoung Shin;Ji-Hwan Kim;Byung Tae Choi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.162-171
    • /
    • 2024
  • Objectives: Electroacupuncture (EA) has been demonstrated to aid stroke recovery. However, few investigations have focused on identifying the potent molecular targets of EA by comparing EA stimulation between naïve and disease models. Therefore, this study was undertaken to identify the potent molecular therapeutic mechanisms underlying EA stimulation in ischemic stroke through a comparison of mRNA sequencing data obtained from EA-treated naïve control and ischemic stroke mouse models. Methods: Using both naïve control and middle cerebral artery occlusion (MCAO) mouse models, EA stimulation was administered at two acupoints, Baihui (GV20) and Dazhui (GV14), at a frequency of 2 Hz. Comprehensive assessments were conducted, including behavioral evaluations, RNA sequencing to identify differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction (PPI) network analysis, and quantitative real-time PCR. Results: EA stimulation ameliorated the ischemic insult-induced motor dysfunction in mice with ischemic stroke. Comparative analysis between control vs. MCAO, control vs. control + EA, and MCAO vs. MCAO + EA revealed 4,407, 101, and 82 DEGs, respectively. Of these, 30, 7, and 1 were common across the respective groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed upregulated DEGs associated with the regulation of inflammatory immune response in the MCAO vs. MCAO + EA comparison. Conversely, downregulated DEGs in the control vs. control + EA comparison were linked to neuronal development. PPI analysis revealed major clustering related to the regulation of cytokines, such as Cxcl9, Pcp2, Ccl11, and Cxcl13, in the common DEGs of MCAO vs. MCAO + EA, with Esp8l1 identified as the only common downregulated DEG in both EA-treated naïve and ischemic models. Conclusion: These findings underscore the diverse potent mechanisms of EA stimulation between naïve and ischemic stroke mice, albeit with few overlaps. However, the potent mechanisms underlying EA treatment in ischemic stroke models were associated with the regulation of inflammatory processes involving cytokines.

Role of TGF-β1/SMADs signalling pathway in resveratrol-induced reduction of extracellular matrix deposition by dexamethasone-treated human trabecular meshwork cells

  • Amy Suzana Abu Bakar;Norhafiza Razali;Renu Agarwal;Igor Iezhitsa;Maxim A. Perfilev;Pavel M. Vassiliev
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.345-359
    • /
    • 2024
  • Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM) increases aqueous humour outflow resistance leading to elevation of intraocular pressure (IOP) in primary open-angle glaucoma, which remains the only modifiable risk factor. Resveratrol has been shown to counteract the steroid-induced increase in IOP and increase the TM expression of ECM proteolytic enzymes; however, its effects on the deposition of ECM components by TM and its associated pathways, such as TGF-β-SMAD signalling remain uncertain. This study, therefore, explored the effects of trans-resveratrol on the expression of ECM components, SMAD signalling molecules, plasminogen activator inhibitor-1 and tissue plasminogen activator in dexamethasone-treated human TM cells (HTMCs). We also studied the nature of molecular interaction of trans-resveratrol with SMAD4 domains using ensemble docking. Treatment of HTMCs with 12.5 µM trans-resveratrol downregulated the dexamethasone-induced increase in collagen, fibronectin and α-smooth muscle actin at gene and protein levels through downregulation of TGF-β1, SMAD4, and upregulation of SMAD7. Downregulation of TGF-β1 signalling by trans-resveratrol could be attributed to its effect on the transcriptional activity due to high affinity for the MH2 domain of SMAD4. These effects may contribute to resveratrol's IOP-lowering properties by reducing ECM deposition and enhancing aqueous humour outflow in the TM.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

CircZNF609 Aggravated Myocardial Ischemia Reperfusion Injury via Mediation of miR-214-3p/PTGS2 Axis

  • Wen-Qiang Tang;Feng-Rui Yang;Ke-Min Chen;Huan Yang;Yu Liu;Bo Dou
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.680-696
    • /
    • 2022
  • Background and Objectives: Circular RNAs were known to play vital role in myocardial ischemia reperfusion injury (MIRI), while the role of CircZNF609 in MIRI remains unclear. This study was aimed to investigate the function of CircZNF609 in MIRI. Methods: Hypoxia/reoxygenation (H/R) model was established to mimic MIRI in vitro. Quantitative polymerase chain reaction was performed to evaluate gene transcripts. Cellular localization of CircZNF609 and miR-214-3p were visualized by fluorescence in situ hybridization. Cell proliferation was determined by CCK-8. TUNEL assay and flow cytometry were applied to detect apoptosis. Lactate dehydrogenase was determined by commercial kit. ROS was detected by DCFH-DA probe. Direct interaction of indicated molecules was determined by RIP and dual luciferase assays. Western blot was used to quantify protein levels. In vivo model was established to further test the function of CircZNF609 in MIRI. Results: CircZNF609 was upregulated in H/R model. Inhibition of CircZNF609 alleviated H/R induced apoptosis, ROS generation, restored cell proliferation in cardiomyocytes and human umbilical vein endothelial cells. Mechanically, CircZNF609 directly sponged miR-214-3p to release PTGS2 expression. Functional rescue experiments showed that miR-214-3p/PTGS2 axis was involved in the function of circZNG609 in H/R model. Furthermore, data in mouse model revealed that knockdown of CircZNF609 significantly reduced the area of myocardial infarction and decreased myocardial cell apoptosis. Conclusions: CircZNF609 aggravated the progression of MIRI via targeting miR-214-3p/PTGS2 axis, which suggested CircZNF609 might act as a vital modulator in MIRI.

Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation

  • Fatini Mat Arisah;Norhayati Ramli;Hidayah Ariffin;Toshinari Maeda;Mohammed Abdillah Ahmad Farid;Mohd Zulkhairi Mohd Yusoff
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1877-1889
    • /
    • 2024
  • Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in Pseudomonas aeruginosa RW9. In this study, P. aeruginosa RW9 was grown in the presence of 10 mg l-1 Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: rhlA, rhlB, and rhlC. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in P. aeruginosa RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.

Investigation of Coat Color Candidate Genes in Korean Cattle(Hanwoo) (한우에서 모색관련 유전자 변이에 관한 연구)

  • Do, K.T.;Shin, H.Y.;Lee, J.H.;Kim, N.S.;Park, E.W.;Yoon, D.H.;Kim, K.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.711-718
    • /
    • 2007
  • Most cattle breeds have a coat color pattern that is characteristic for the breed. Korean cattle(Hanwoo) has a coat color ranging from yellowish brown to dark brown including a red coat color. Variation in the Hanwoo coat color is likely to be the effects of modified genes segregating within the Hanwoo breed. MC1R encoded by the Extension(E) locus was almost fixed with recessive red e allele in the Hanwoo, but other gene(s) might be affecting the variation of the Hanwoo coat color into yellowish to red brown. We have analyzed a segregation of coat color in the F2 families generated from two Hanwoo bulls(yellowish brown) mated to six F1 dams(black) derived from Hanwoo and Holstein crosses. Segregation of coat color in the offspring found a ratio of 1(yellowish brown) : 1(black) and this ratio indicates that a single gene may play a major role for the Hanwoo coat color. We further investigated SNPs in MC1R, ASIP and TYRP1 loci to determine genetic cause of the Hanwoo coat color. Several polymorphisms within ASIP intron 2 and TYRP1 exons were found but not conserved within the Hanwoo population. However, the segregation of the MC1R e allele was completely associated with the Hanwoo coat color. Based on this information, it is clear that the MC1R e allele is mainly responsible for the yellowish red Hanwoo coat color. Further study is warrant to identify possible genetic interaction between MC1R e allele and other coat color related gene(s) for the variation of Hanwoo coat color from yellowish brown to dark brown. (Key words : Hanwoo, Coat color, SNP, MC1R, ASIP, TYRP1)