• Title/Summary/Keyword: gene expression in Pseudomonas

Search Result 132, Processing Time 0.026 seconds

Integration and Expression of BaciZlus thun'ngiensis Crystal Protein Gene in Chromosomal DNA of Pseudomonas Strains Using Transposon Tn5 (Transposon Tn5에 의한 Bacillus thuringiensis 독소단백질 유전자의 Pseudomonas 내로의 도입 및 발현)

  • 신병식;구본탁;박승환;김정일
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 1991
  • The crystal protein gene (cp) of Bacillus tizuringienszs subsp. liuvstaki (B.t.k.) HI173 was subcloned into HanzHI site of central region (Tn5-cp) or BglII site of IS50L region (IS50L-cp) in Tn5, and transposed into the chromosomal DNA of five strains of root-colonizing Pseudomonas. The expression of cp gene in Acwiomoncrs transconjugants was demonstrated by immunoblot analysis and bioassay against larvae of the Hyphantria cunea.

  • PDF

Expression of the Bacillus thuringiensis Crystal Protein Gene in Pseudomonas Isolated from Rhizosphere Soil of Korean Crops (국내 농작물의 근부토양에서 분리한 Pseudomonas 내에서의 Bacillus thuringiensis 독소단백질 유전자의 발현)

  • Tag, Koo-Bon;Shin, Byung-Sik;Park, Seung-Hwan;Park, Ho-Yong;Kim, Jeong-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.295-300
    • /
    • 1989
  • Screening of Pseudomonas strains that can be used as hosts for expression of crystal protein gene of Bacillus thuringiensis subsp. kurstaki HD-73 was carried out. From rhizosphere soil of 7 kinds or crops as fluorescent Pseudomonas strains were isolated. A hybrie plasmid, pKTC1, composed of the broad host range vector pKT230 and the crystal protein gene was constructed and used for transformation of the 35 Pseudomonas strains. As the result, the crystal protein gene could be introduced into 4 isolates. Several methods including bioassay and immunochemical detection indicated that the crystall protein gene was expressed in the Pseudomonus isolates.

  • PDF

Simultaneous Expression of Pseudomonas sp. Endo-1,4$\beta$-Glucanase and $\beta$-1,4=Glucisidase Gene in Escherichia coli and Saccharomyces cerevisiae (Pseudomonas sp. Endo-1,4-$\beta$-Glucanase와 $\beta$-1,4-Glucosidase 유전자의 대장균 및 효모에서의 동시 발현)

  • Kim, Yang-Woo;Chun, Sung-Sik;Chung, Young-Chul;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.652-658
    • /
    • 1995
  • We attempted simultaneous expression of genes coding for endoglucanase and $\beta $-glucosidase from Pseudomonas sp. by using a synthetic two-cistron svstem in Escherichia coli and Saccharomyces cerevisiae. Two-cistron system, 5'--tac promoter-endoglucanase gene--$\beta $-glucosidase gene-- 3', 5'-tac promoter--$\beta $-glucosidase gene--endoglucanase gene--3' and 5'-tac promoter--endoglucanase gene--SD sequence--$\beta $-glucosidase gene--3, were constructed, and expressed in E. coli and S. cerevisiae. The E. coli and S. cerevisiae contained two-cistron system produced simultaneously endoglucanase and $\beta $-glucosidase. The recombinant genes contained the bacterial signal peptide sequence produced low level of endoglucanase and $\beta $-glucosidase in S. cerevisiae transformants: Approximately above 44% of two enzymes was localized in the intracellular fraction. The production of endoglucanase and $\beta $-glucosidase in veast was not repressed in the presence of glucose or cellobiose. The veast strain contained recombinant DNA with two genes hydrolyzed carboxvmethyl cellulose, and these endoglucanase and $\beta $-glucosidase degraded CMC synergistically to glucose, cellobiose and oligosaccharide. This result suggests the possibility of the direct bioconversion of cellulose to ethanol by the recombinant yeast.

  • PDF

High-Level Expression of Pseudomonas sp. LBC505 Endoglucanase Gene in Escherichia coli

  • Chun, Sung-Sik;Kim, Yang-Woo;Chung, Young-Chul;Kim, Kyeong-Sook;Sung, Nack-Kie
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.14-17
    • /
    • 1995
  • Endoglucanase gene of Pseudomonas sp. LBC505 was previously cloned in pUC19 to yield plasmid pLCl. The Pseudomonas sp. LBC505 endoglucanase gene was subcloned in a temperature-regulated Es-cherichia coli expression vector, pAS1, containing the leftward promoter $P_L$ of bacteriophage lambda. The level of gene expression was controlled by the thermal inactivation of the heat-sensitive lambda cI857 repressor. Best yield of endoglucanase was obtained by lowering the incubation temperature to $37^{\circ}C$ after induction at $42^{\circ}C$ for 1h. Under these conditions enzyme production continued for about 5h at a gradually decreasing rate. Ecoli harboring recombinant plasmid pASC10 expressed 4.3 times as much CMCase activity as E.coli containing pLCl. To enhance the expression level of endogl, ucanase gene, we have also changed the presumptive Shine-Dalgamo sequence (AGAGGT) of the gene to consensus sequence (AGGAGGT) by site-directed mutagenesis. The genes mutated were subcloned in pASl resulting in the formation of recombinant plasmid pASS50. E.coli harboring the plasmid pASS50 expressed 6.2-fold higher levels of CMCase activity than that of E.coli harboring pLC1.

  • PDF

Cloning and Expression of Pseudomonas cepacia catB Gene in Pseudomonas putida

  • Song, Seung-Yeon;Jung, Young-Hee;Lee, Myeong-Sok;Lee, Ki-Sung;Kim, Young-Soo;Kim, Chi-Kyung;Choi, Sang-Ho;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.334-340
    • /
    • 1996
  • The enzyme, cis,cis-muconate lactonizing enzyme has been proposed to play a key role in the $\beta$-ketoadipate pathway of benzoate degradation. A 3.2-kb EcoRI fragment termed as pRSU2, isolated from a Pseudomonas cepacia genomic library was able to complement the catB defective mutant. Several relevant restriction enzyme sites were determined within the cloned fragment. In Pseudomonas putida SUC2 carrying pRSU2, the enzyme activity was relatively higher than those of the induced or partially induced state of wild type P. putida PRS2000. It was probably due to higher expression of P. cepacia catB in P. putida PRS2000. It was probably due to higher expression of P. cepacia catB in P. putida. One possible interpretation of these results is that the catB promoter in P. cepacia is recognized within P. putida, resulting in the almost same expression level.

  • PDF

Expression of Bacillus thringiensis HD-1 gene in rhizobacteria Pseudomonas fluorescens KR164 (근권 길항세균 Pseudomonas fluorescens KR164에 Bacillus thuringiensis HD-1 유전자의 삽입과 발현)

  • Kim, Yeong-Yil;Rhee, Young-Hwan;Kang, Heun-Soo
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.227-231
    • /
    • 1992
  • The plasmids pSUPBT and pSUPBTR were constructed with a vector pSUP2021 and the BT toxin gene in the plasmid pES 1. The plasmids constructed were introduced into the antagonistic rhizobacteria P. fluorescens KR164 by conjugation and P. fluorescens having pSUPBT and pSUPBTR were named P. fluorescens KR164(pSUPBT)#2, KR164(pSUPBT)#3, KR164(pSUPBTR)#2 and KR164(pSUPBTR)#3, respectively. The BT toxin gene were identified in all transformants by Southern hybridization and the final product of BT toxin gene was identified only in P. fluorescens KR164(pSUPBTR)#3 by SDS-PAGE. This crystal toxin protein were also observed in electron microscopy.

  • PDF

Expression of the mexA Gene Requires the DNA Helicase RecG in Pseudomonas aeruginosa PAO1

  • Heo, Aram;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.492-495
    • /
    • 2015
  • This study provides evidence that RecG regulates the expression of the OxyR-independent gene mexA in Pseudomonas aeruginosa PAO1. A reduction in mexA expression was observed in the absence of RecG, but not OxyR, by northern blot and quantitative real-time PCR analyses. The canonical palindromic RecG binding sequence was present upstream of the mexA promoter, and bound purified RecG and single strand-binding protein. These data reveal a novel mechanism of OxyR-independent gene transcription by RecG.

Expression of \beta-agarase Gene and Carabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. (해양의 Pseudomonas sp. 로부터 분리한 alginate lyase 유전자의 promoter에 의한 대장균 내에서의 \beta-agarase 유전자의 발현과 catabolite repression의 변화)

  • 공인수;박제현;한정현;최윤혁;이종희;진철호;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Expression of f3 ~agarase Gene and Catabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. Jin, Cheal~Ho, J~Hyeon Park, Jeong-Hyun Han, YoonM Hyeok Chae, Jong~Hee Lee, Jung-Kee Lee!, and In-800 Kong*. Faculty of Food Science and Biotechnology, Pukyong National UniversitYt Pusan 608-737, Korea, llnBioNet Co. 1690-3 Taejon 306-230, Korea - Promoter is a key factor for expression of the recombinant protein. There are many promoters for overexpression of protein in various organisms. The aly promoter of Pseudomonas sp. W7 isolated from marine environment was known to be a constitutive expression promoter of the alginate lyase gene, and it's promoter activity is repressed by glucose in Escherichia coli. To investigate the catabolite repression of the aly promoter ~md association between the promoter mutants, f3 agarase gene, which was also cloned from Pseudomonas sp. W7 was connected to the aly promoter with the sequence the coding 46 N-terminal amino acids ofthe alginate lyase gene. The constructed plasmid was introduced into E. coli and the agarase activity was measured. Fourty six amino acids of the alginate lyase gene was serially deleted using peR to the direction of 5' upstream region and subcloned. The agarase was overexpressed by the aly promoter and the production of agarase was repressed by the addition of glucose into culture media. Fourty six amino acids of alginate lyase did not affect the production of agarase at all. The deletion of a putative stem-loop structure in the aly promoter induced the decrease of f3 -agarase productivity.

  • PDF

A Broad-Host-Range Promoter-Probe Vector, pKU20, and Its Use in Promoter Cloning and Expression of Bacillus thuringiensis Crystal Protein Gene in Pseudomonas putida

  • SHIN, BYUNG SIK;BON TAG KOO;SEUNG HWAN PARK;HO YONG PARK;JEONG IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.240-245
    • /
    • 1991
  • We have constructed a promoter-probe vector pKU20 using pKT230, a derivative of broad-host-range plsmid RSF1010, as a base. The pKU20 contains structural gene for aminoglycoside phos-photransferase (aph), without promoter, and a multiple cloning site upstream the aph. Using this vector, a 412base pairs (bp) PstI fragment showing strong promoter activity both in Escherichia coli LE392 and Pseudomonas putida KCTC1644 has been cloned from Pseudomonas fluorescens chromosomal DNA on the basis of streptomycin resistance. The nucleotide sequence of the 412 bp fragment has been determined and the putative - 35 and -10 region was observed. Insecticidal protein gene of Bacillus thuringiensis subsp. kurstaki HD-73 inserted on downstream of the promoterlike DNA fragment was efficiently expressed in E. coli and P. putida. The toxin protein was efficiently synthesized in an insoluble form in both strains.

  • PDF

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Kang, Sang-Gu;Cha, Hyeon-Wook;Chang, Moo-Dng;Park, Eui-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.239-247
    • /
    • 2003
  • In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.