• Title/Summary/Keyword: gene expression data

Search Result 1,293, Processing Time 0.036 seconds

Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Moreno, Jose;Jacome-Lopez, Karina;Zentella-Dehesa, Alejandro;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2519-2525
    • /
    • 2016
  • There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile.

Correlation Analysis between Regulatory Sequence Motifs and Expression Profiles by Kernel CCA

  • Rhee, Je-Keun;Joung, Je-Gun;Chang, Jeong-Ho;Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.63-68
    • /
    • 2005
  • Transcription factors regulate gene expression by binding to gene upstream region. Each transcription factor has the specific binding site in promoter region. So the analysis of gene upstream sequence is necessary for understanding regulatory mechanism of genes, under a plausible idea that assumption that DNA sequence motif profiles are closely related to gene expression behaviors of the corresponding genes. Here, we present an effective approach to the analysis of the relation between gene expression profiles and gene upstream sequences on the basis of kernel canonical correlation analysis (kernel CCA). Kernel CCA is a useful method for finding relationships underlying between two different data sets. In the application to a yeast cell cycle data set, it is shown that gene upstream sequence profile is closely related to gene expression patterns in terms of canonical correlation scores. By the further analysis of the contributing values or weights of sequence motifs in the construction of a pair of sequence motif profiles and expression profiles, we show that the proposed method can identify significant DNA sequence motifs involved with some specific gene expression patterns, including some well known motifs and those putative, in the process of the yeast cell cycle.

  • PDF

The Sliding Window Gene-Shaving Algorithm for Microarray Data Analysis

  • 이혜선;최대우;전치혁
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.139-152
    • /
    • 2002
  • Gene-shaving(Hastie et al, 2000) is a very useful method to identify a meaningful group of genes when the variation of expression is large. By shaving off the low-correlated genes with the leading principal component, the primary genes with the coherent expression pattern can be identified. Gene-shaving method works well If expression levels are varied enough, but it may not catch the meaningful cluster in low expression level or different expression time even with coherent patterns. The sliding window gene-shaving method which is to apply gene-shaving in each sliding window after hierarchical clustering is to compensate losing a meaningful set of genes whose variation is not large but distinct. The performance to identify expression patterns is compared for the simulated profile data by the different variance and expression level.

  • PDF

Conditional Variational Autoencoder-based Generative Model for Gene Expression Data Augmentation (유전자 발현량 데이터 증대를 위한 Conditional VAE 기반 생성 모델)

  • Hyunsu Bong;Minsik Oh
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Gene expression data can be utilized in various studies, including the prediction of disease prognosis. However, there are challenges associated with collecting enough data due to cost constraints. In this paper, we propose a gene expression data generation model based on Conditional Variational Autoencoder. Our results demonstrate that the proposed model generates synthetic data with superior quality compared to two other state-of-the-art models for gene expression data generation, namely the Wasserstein Generative Adversarial Network with Gradient Penalty based model and the structured data generation models CTGAN and TVAE.

Comparison of the Cluster Validation Techniques using Gene Expression Data (유전자 발현 자료를 이용한 군집 타당성분석 기법 비교)

  • Jeong, Yun-Kyoung;Baek, Jang-Sun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-76
    • /
    • 2006
  • Several clustering algorithms to analyze gene expression data and cluster validation techniques that assess the quality of their outcomes, have been suggested, but evaluations of these cluster validation techniques have seldom been implemented. In this paper we compared various cluster validity indices for simulation data and real genomic data, and found that Dunn's index is more effective and robust through small simulations and with real gene expression data.

  • PDF

Comparison of the Cluster Validation Methods for High-dimensional (Gene Expression) Data (고차원 (유전자 발현) 자료에 대한 군집 타당성분석 기법의 성능 비교)

  • Jeong, Yun-Kyoung;Baek, Jang-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.167-181
    • /
    • 2007
  • Many clustering algorithms and cluster validation techniques for high-dimensional gene expression data have been suggested. The evaluations of these cluster validation techniques have, however, seldom been implemented. In this paper we compared various cluster validity indices for low-dimensional simulation data and real gene expression data, and found that Dunn's index is the most effective and robust, Silhouette index is next and Davies-Bouldin index is the bottom among the internal measures. Jaccard index is much more effective than Goodman-Kruskal index and adjusted Rand index among the external measures.

NGSEA: Network-Based Gene Set Enrichment Analysis for Interpreting Gene Expression Phenotypes with Functional Gene Sets

  • Han, Heonjong;Lee, Sangyoung;Lee, Insuk
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.579-588
    • /
    • 2019
  • Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.

Meta-analysis of Gene Expression Data Identifies Causal Genes for Prostate Cancer

  • Wang, Xiang-Yang;Hao, Jian-Wei;Zhou, Rui-Jin;Zhang, Xiang-Sheng;Yan, Tian-Zhong;Ding, De-Gang;Shan, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.457-461
    • /
    • 2013
  • Prostate cancer is a leading cause of death in male populations across the globe. With the advent of gene expression arrays, many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biologic mechanisms of prostate cancer, we conducted a meta-analysis of two studies on prostate cancer. Eight key genes were identified to be differentially expressed with progression. After gene co-expression analysis based on data from the GEO database, we obtained a co-expressed gene list which included 725 genes. Gene Ontology analysis revealed that these genes are involved in actin filament-based processes, locomotion and cell morphogenesis. Further analysis of the gene list should provide important clues for developing new prognostic markers and therapeutic targets.

Statistical Analysis of Gene Expression Data

  • 박태성
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.97-115
    • /
    • 2001
  • cDNA microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. Many statistical analysis tools become widely applicable to the analysis of cDNA microarray data. In this talk, we consider a two-way ANOVA model to differentiate genes that have high variability and ones that do not. Using this model, we detect genes that have different gene expression profiles among experimental groups. The two-way ANOVA model is illustrated using cDNA microarrays of 3,800 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.

  • PDF

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF