Proceedings of the Korean Society for Bioinformatics Conference
/
2000.11a
/
pp.59-60
/
2000
The past few years have seen a dramatic increase in gene expression data on the basis of DNA microarrays or DNA chips. Going beyond a generic view on the genome, microarray data are able to distinguish between gene populations in different tissues of the same organism and in different states of cells belonging to the same tissue. This affords a cell-wide view of the metabolic and regulatory processes under different conditions, building an effective basis for new diagnoses and therapies of diseases. In this talk we present machine learning techniques for effective mining of DNA microarray data. A brief introduction to the research field of machine learning from the computer science and artificial intelligence point of view is followed by a review of recently-developed learning algorithms applied to the analysis of DNA chip gene expression data. Emphasis is put on graphical models, such as Bayesian networks, latent variable models, and generative topographic mapping. Finally, we report on our own results of applying these learning methods to two important problems: the identification of cell cycle-regulated genes and the discovery of cancer classes by gene expression monitoring. The data sets are provided by the competition CAMDA-2000, the Critical Assessment of Techniques for Microarray Data Mining.
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Proceedings of the Korean Society for Bioinformatics Conference
/
2000.11a
/
pp.45-52
/
2000
Genomic approach produces massive amount of data within a short time period, New high-throughput automatic sequencers can generate over a million nucleotide sequence information overnight. A typical DNA chip experiment produces tens of thousands expression information, not to mention the tens of megabyte image files, These data must be handled automatically by computer and stored in electronic database, Thus there is a need for systematic approach of data collection, processing, and analysis. DNA sequence information is translated into amino acid sequence and is analyzed for key motif related to its biological and/or biochemical function. Functional genomics will play a significant role in identifying novel drug targets and diagnostic markers for serious diseases. As an enabling technology for functional genomics, bioinformatics is in great need worldwide, In Korea, a new functional genomics project has been recently launched and it focuses on identi☞ing genes associated with cancers prevalent in Korea, namely gastric and hepatic cancers, This involves gene discovery by high throughput sequencing of cancer cDNA libraries, gene expression profiling by DNA microarray and proteomics, and SNP profiling in Korea patient population, Our bioinformatics team will support all these activities by collecting, processing and analyzing these data.
The genome sequencing project has generated and will contitute to generate enormous amounts of sequence data. Since the first complete genome sequence of bacterium Haemophilus in fluenzae was published in 1995, the complete genome sequences of 2 eukaryotic and about 22 prokaryotic organisms have detemined. Given this everincreasing amounts of sequence information, new strategies are necessary to efficiently pursue the phase of the geome project- the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip technology was developed to efficienfly identify the differential expression pattern of indepondent biogical samples. DNA chip provides a new tool for genome expreesion analysis that may revolutionize revolutionize many aspects of human kife including mew surg discovery and human disease diagnostics.
Brain gene expression information is closely related to the structural and functional characteristics of the brain. Thus, extensive research has been carried out on the relationship between gene expression patterns and the brain's structural organization. In this study, Principal Component Analysis was used to extract features of gene expression patterns, and genes were automatically classified by spatial distribution. Voxels were then clustered with classified specific region expressed genes. Finally, we visualized the clustering results for mouse hippocampal region gene expression with the Allen Brain Atlas. This experiment allowed us to classify the region-specific gene expression of the mouse hippocampal region and provided visualization of clustering results and a brain atlas in an integrated manner. This study has the potential to allow neuroscientists to search for experimental groups of genes more quickly and design an effective test according to the new form of data. It is also expected that it will enable the discovery of a more specific sub-region beyond the current known anatomical regions of the brain.
Proceedings of the Korean Society of Crop Science Conference
/
2022.10a
/
pp.280-280
/
2022
Tiller angle, defined as the angle between the main stem and its side tillers, is one of the main target traits selected inbreeding to achieve the ideal plant type and increase rice yield. Therefore, the discovery and identification of tiller angle-related genes can provide architecture and yield. In the present work, using QTL analysis hence a total of 8 quantitative trait loci (QTLs) were detected based on the phenotype data of tiller angle and tiller crown width in two years. Among them, four QTLs (qTA9, qCW9, qTA9-1, qCW9-1) were overlapped at marker interval RM6235-RM24288 on chromosome 9 with a large effect value regarded as stable major QTL. Twenty tiller angle-related genes were selected from the target region and the relative gene expression levels were checked in five compact type lines, five spreading type lines, and their parental lines. Finally, OsSA URq9 which belongs auxin-responsive SMALL AUXIN UP RNA (SAUR) protein family was selected as a target gene. Overall, this work will help broaden our understanding of the genetic control of tiller angle and tiller crown width, and this study provides both a good theoretical basis and a new genetic resource for the breeding of ideal-type rice.
The testis is major male gonad responsible for spermatogenesis and steroidogenesis. Much knowledge is still remained to be learned about the control of these events. In this study, we performed a comprehensive bioinformatics analysis on 1,196 mouse testis proteins screened from public protein database. Integrated function and pathway analysis were performed through Database for Annotation, Visualization and Integrated Discovery (DAVID) and ingenuity Pathway Analysis (IPA), and significant features were clustered. Protein membrane organization and gene density on chromosomes were analyzed and discussed. The enriched bioinformatics analysis could provide clues and basis to the development of diagnostic markers and therapeutic targets for infertility and male contraception.
Main objectives of this study were to investigate accuracy, bias and power of linear and threshold model segregation analysis methods for detection of major genes in categorical traits in farm animals. Maximum Likelihood Linear Model (MLLM), Bayesian Linear Model (BALM) and Bayesian Threshold Model (BATM) were applied to simulated data on normal, categorical and binary scales as well as to disease data in pigs. Simulated data on the underlying normally distributed liability (NDL) were used to create categorical and binary data. MLLM method was applied to data on all scales (Normal, categorical and binary) and BATM method was developed and applied only to binary data. The MLLM analyses underestimated parameters for binary as well as categorical traits compared to normal traits; with the bias being very severe for binary traits. The accuracy of major gene and polygene parameter estimates was also very low for binary data compared with those for categorical data; the later gave results similar to normal data. When disease incidence (on binary scale) is close to 50%, segregation analysis has more accuracy and lesser bias, compared to diseases with rare incidences. NDL data were always better than categorical data. Under the MLLM method, the test statistics for categorical and binary data were consistently unusually very high (while the opposite is expected due to loss of information in categorical data), indicating high false discovery rates of major genes if linear models are applied to categorical traits. With Bayesian segregation analysis, 95% highest probability density regions of major gene variances were checked if they included the value of zero (boundary parameter); by nature of this difference between likelihood and Bayesian approaches, the Bayesian methods are likely to be more reliable for categorical data. The BATM segregation analysis of binary data also showed a significant advantage over MLLM in terms of higher accuracy. Based on the results, threshold models are recommended when the trait distributions are discontinuous. Further, segregation analysis could be used in an initial scan of the data for evidence of major genes before embarking on molecular genome mapping.
Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.
Park, Eun-Mi;Nam, Bo-Hye;Kim, Young-Ok;Kong, Hee-Jeong;Kim, Woo-Jin;Lee, Sang-Jun;Kong, In-Soo;Choi, Tae-Jin
Fisheries and Aquatic Sciences
/
v.10
no.3
/
pp.119-126
/
2007
The analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and the development of resources for functional genomics. To analyze the transcriptome of the abalone Haliotis discus hannai, we conducted EST analysis using seven cDNA libraries made from gill, gut, hepatopancreas, skin, muscle, testis, and ovary. Redundant ESTs were assembled into overlapping contiguous sequences using the assembly program ICAtools. We found that the total 1,393 ESTs formed 135 clusters and 951 singletons, indicating that the overall redundancy of the library was 22%. Of the 1,393 clones, BLAST identified 1,278 clones (91.7%) as known genes; 115 clones (8.3%) did not match any previously described gene. Based on the major functions of their encoded proteins, the identified clones were classified into 16 broad categories. Sequence analysis revealed the presence of micro satellite-containing genes that may be valuable for further gene mapping studies. This study contributes to the identification of numerous EST clones that can be applied to further clarifying the genetics and developmental biology of abalone.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.