• Title/Summary/Keyword: gene cloning.

Search Result 1,588, Processing Time 0.035 seconds

Kanamycin Acetyltransferase Gene from Kanamycin-producing Streptomyces kanamyceticus IFO 13414

  • Joe, Young-Ae;Goo, Yang-Mo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.470-474
    • /
    • 1998
  • A kanamycin producer, Streptomyces kanamyceticus IFO 13414 is highly resistant to kanamycin. Cloning of the kanamycin resistance genes in S. lividans 1326 with pIJ702 gave several kanamycin resistant transformants. Two transformants, S. lividans SNUS 90041 and S. lividan. SNUS 91051 showed similar resistance patterns to various aminoglycoside antibiotics. Gene mapping experiments revealed that plasmids pSJ5030 and pSJ2131 isolated from the transformants have common resistant gene fragments. Subcloning of pSJ5030 gave a 1.8 Kb gene fragment which showed resistance to kanamycin. Cell free extracts of S. lividans SNUS 90041, S. lividans SNUS 91051 and subclone a S. lividans SNUS 91064 showed kanamycin acetyltransferase activity. The detailed gene map is included.

  • PDF

Molecular Cloning and Analysis of Nucleotide Sequence of Xylanase Gene (xynk) from Bacillus pumilus TX703 (Bacillus pumilus TX703 유래 Xylanase 유전자(xynK)의 Cloning과 염기서열 분석)

  • 박영서
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.188-199
    • /
    • 2002
  • A gene coding for xylanase from thermo-tolerant Bacillus pumilus TX703 was cloned into Escherichia coli DH5 $\alpha$ using pUC19. Among 7,400 transformants, four transformants showed clear zones on the detection agar plates containing oat-spells xylan. One of them which showed highest xylanase activity was selected and its recombinant plasmid, named pXES106, was found to carry 2.24 kb insert DNA fragment. When the nucleotide sequence of the cloned xylanase gene (xynK) was determined, xynK gene was found to consist of 1,227 base-pair open reading frame coding for a polypeptide of 409 amino acids with a deduced molecular weight of 48 kDa. The coding sequence was preceded by a putative ribosome binding site, the transcription initiation signals, and cia-acting catabolite responsive element. The deduced amino acids sequence of xylanase is similar to those of the xylanases from Hordeum vulgare (barley) and Clostridium thermocellum, with 39 and 31% identical residues, respectively. The amino acids sequence of this xylanase was quite different from those of the xylanases from other Bacillus species.

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF

Cloning and Expression of the Bdi Methylase Gene in E. coli (대장균 내에서의 Bdi I Methylase 유전자의 클로닝과 발현)

  • 전희숙;김용석;최경래;노현모
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 1987
  • The gene for the Bdi I modification enzyme, which is one of Bdi I restriction-modification system, fromBrevibacterium divaricatum FERM 5948 was cloned and expressed in E. coli. For cloning of the Bdi I methylase gene, we have initially used three cloning site(EcoRI, BamHI and Sal I) of plasmid vector pBR 322 and adopted the retransformation method after Bdi I restriction endonuclease cleavage. Selection of transformants carrying the gene was based on the resistance of the modified plasmid encoding the enzyme to cleavage by Bdi I restriction enzyme, and the recombinant plasmid pBDIM 116 containing 5.6kb EcoRI insery was proved to carry the gene. Crude cell extracts prepared from strains carrying the plasmid pBDIM 116 contained an S-adenosylmethionine-dependent methyltransferase activity specific for the Bdi I recognition site, ATCGAT. The restriction map was constructed with 11 restriction enzyme, and the Bdi I restriction-modification system was also discussed.

  • PDF

Positional cloning in mice: a new mutant mouse, Sims (Sexual Immaturity, Megaencephaly, and Seizure)

  • Koo, S.K.;Jin, S.J.;Lee, K.S.;Oh, B.S.
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1999.10b
    • /
    • pp.31-31
    • /
    • 1999
  • Characterization of mutant mice has been utilized as an animal model for the study of human inherited diseases. In addition to the pathogenesis stduy using the mutant mice, the mice have been used for the identification of the genes causing the phenotypes. Functional cloning and positional cloning are two approaches, depending on the phenotypes of the mutant mice. Though it takes a long time positional cloning has been well used to identify the gene of which function can not be presumed from the mouse phenotype. Recently by the advance of the molecular tools and the human genome project close to 10,000 genetic markers are developed to make the procedure faster. We obtained a new mutant mouse, sims, spontaneously arose and the affected mouse has a mild tremor and seizure was observed. Homozygote in either sex is sterile since uterus growth in female and seminal vesicle in male are not induced for the growth in puberty, implying the abnormal hormonal regulation during puberty. Supporting this, there is no detectable testosterone in the serum of the mutant male and the brain of the mutant is 30% heavier than littermate. To identify the location of the mutated gene, intraspecies cross to CAST/Ei was carried out and the 37 affected mice was analyzed for the linkage. The gene was mapped on chromosome 18, 20 cM from the centromere. More than 500 F2 progenies have been analyzed for the linkage and the locus becomes narrow within 3cM between Egrl and Fgf gene.f gene.

  • PDF

Molecular Cloning of ATPase $\alpha$-Subunit Gene from Mitochondria of Korean Ginseng (Panu ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A. Meyer) ATPase $\alpha$-subunit 유전자의 Cloning)

  • Park, Ui-Sun;Choi, Kwan-Sam;Kim, Kab-Sig;Kim, Nam-Won;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.56-61
    • /
    • 1995
  • Molecular cloning and restriction mapping on ATPase $\alpha$-subunit gene (atpA) were carried out to obtain genomic information concerned with the gene structure and organization in Korean ginseng mitochondria. Two different clones containing the homologous sequence of atpA gene were selected from SalI and PstI libraries of mitochondrial DNA (mtDNA) of Korean ginseng. The sizes of mtDNA fragments inserted in SalI and PstI clones were 3.4 kb and 13 kb, respectively. Southern blot analysis with [$^{32}P$] labelled Oenothera atPA gene probe showed that atpA gene sequence was located in 2.0 kb XkaI fragment in PstI clone and in 1.7 kb XbaI fragment in SalI clone. A partial sequening ascertained that the SalI clone included about 1.2 kb fragment from SalI restriction site to C-terminal sequence of this gene but about 0.3 kb N-terminal sequence of open reading frame was abscent. The PstI fragment was enough large to cover the full sequence of atpA gene. The same restriction pattern of the overlapped region suggests that both clones include the same fragment of atiA locus. Data of Southern blot analysis and partial nucleotide sequencing suggested that mtDNA of Korean ginseng has a single copy of atpA gene. Key words ATPase a-subunit, mitochondrial DNA, Panax ginseng.

  • PDF

Cloning and Sequence Analysis of a Glyceraldehyde-3-phosphate Dehydrogenase Gene from Ganoderma lucidum

  • Fei Xu;Zhao Ming Wen;Li Yu Xiang
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.515-522
    • /
    • 2006
  • A cDNA library of Ganoderma lucidum has been constructed using a Zap Express cloning vector. A glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was isolated from this library by hybridization of the recombinant phage clones with a gpd-specific gene probe generated by PCR. By comparison of the cDNA and the genomic DNA sequences, it was found that the complete nucleotide sequence encodes a putative polypeptide chain of 338 amino acids interrupted by 6 introns. The predicted amino acid sequence of this gene shows a high degree of sequence similarity to the GPD proteins from yeast and filamentous fungi. The promoter region contains a CT-rich stretch, two CAAT boxes, and a consensus TATA box. The possibility of using the gpd promoter in the construction of new transformation vectors is discussed.

Cloning of a Hemolytic Mosquitocidal Delta-endotoxin Gene (cyt) of Bacillus thuringiensis 73E10-2 (serotype 10) into Bacillus subtilis and Characterization of the cyt Gene Product

  • Kim, Kwang-Hyeon;Ohba, Michio;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.326-330
    • /
    • 1996
  • To illustrate whether a hemolysin in $\delta$-endotoxins of Bacillus thuringiensis strain 73E10-2 and subsp. israelensis had immunological identity, a cyt gene of the strain 73E10-2 which encodes a hemolysin was cloned to B. subtilis (transformant 2753). The transformant 2753 containing cyt gene produced the hemolysin which lysed sheep erythrocytes after treatment of proteinase K. The hemolysin was proved also to be toxic against mosquito larvae (Aedes aegypti). The molecular weight of the hemolysin produced from the transformant 2753 was determined to be about 25 kDa by SDS-PAGE and immunoblot. The hemolysin in $\delta$-endotoxin of subsp. israelensis and subsp. kyushensis did not react on immunoblot using polyclonal anti-$\delta$-endotoxin of the strain 73E10-2, but 70-140 kDa mosquitocidal toxins in $\delta$-endotoxin of subsp. kyushuensis reacted.

  • PDF

Cloning and Characterization of the Zeaxanthin Glucosyltransferase Gene (crtX) from the Astaxanthin-Producing Marine Bacterium, Paracoccus haeundaensis

  • Seo, Yong-Bae;Choi, Seong-Seok;Nam, Soo-Wan;Lee, Jae-Hyung;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1542-1546
    • /
    • 2009
  • Zeaxanthin glucosyltransferase (CrtX) mediates the formation of zeaxanthin to zeaxanthin diglucoside. Here, we report cloning of the crtX gene responsible for zeaxanthin diglucoside biosynthesis from Paracoccus haeundaensis and the production of the corresponding carotenoids in transformed cells carrying this gene. An expression plasmid containing the crtX gene (pSTCRT-X) was constructed, and Escherichia coli cells containing this plasmid produced the recombinant protein of approximately 46 kDa. Biosynthesis of zeaxanthin diglucoside was obtained when the plasmid pSTCRT-X was co-transformed into E. coli containing the pET-44a(+)-CrtEBIYZ carrying crtE, crtB, crtI, crtY, and crtZ genes required for zeaxanthin $\beta$-D-diglucoside biosynthesis.

Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3

  • Wang, Jian-Rong;Li, Yang-Yuan;Liu, Danni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.845-855
    • /
    • 2015
  • The present study describes the gene cloning and high-level expression of an alkaline and thermostable lipase gene from Trichosporon coremiiforme V3. Nucleotide analysis revealed that this lipase gene has an open reading frame of 1,692 bp without any introns, encoding a protein of 563 amino acid residues. The lipase gene without its signal sequence was cloned into plasmid pPICZαA and overexpressed in Pichia pastoris X33. The maximum lipase activity of recombinant lipase was 5,000 U/ml, which was obtained in fed-batch cultivation after 168 h induction with methanol in a 50 L bioreactor. The purified lipase showed high temperature tolerance, and being stable at 60℃ and kept 45% enzyme activity after 1 h incubation at 70℃. The stability, effects of metal ions and other reagents were also determined. The chain length specificity of the recombinant lipase showed high activity toward triolein (C18:1) and tripalmitin (C16:0).