Fungal genome sequencing and assembly have been trivial in these days. Genome analysis relies on high quality of gene prediction and annotation. Automatic fungal genome annotation pipeline is essential for handling genomic sequence data accumulated exponentially. However, building an automatic annotation procedure for fungal genomes is not an easy task. FunGAP (Fungal Genome Annotation Pipeline) is developed for precise and accurate prediction of gene models from any fungal genome assembly. To make high-quality gene models, this pipeline employs multiple gene prediction programs encompassing ab initio, evidence-, and homology-based evaluation. FunGAP aims to evaluate all predicted genes by filtering gene models. To make a successful filtering guide for removal of false-positive genes, we used a scoring function that seeks for a consensus by estimating each gene model based on homology to the known proteins or domains. FunGAP is freely available for non-commercial users at the GitHub site (https://github.com/CompSynBioLab-KoreaUniv/FunGAP).
Park, Young-Kyu;Kang, Tae-Wook;Baek, Su-Jin;Kim, Kwon-Il;Kim, Seon-Young;Lee, Do-Heon;Kim, Yong-Sung
Genomics & Informatics
/
제10권1호
/
pp.33-39
/
2012
High-throughput genomic technologies (HGTs), including next-generation DNA sequencing (NGS), microarray, and serial analysis of gene expression (SAGE), have become effective experimental tools for cancer genomics to identify cancer-associated somatic genomic alterations and genes. The main hurdle in cancer genomics is to identify the real causative mutations or genes out of many candidates from an HGT-based cancer genomic analysis. One useful approach is to refer to known cancer genes and associated information. The list of known cancer genes can be used to determine candidates of cancer driver mutations, while cancer gene-related information, including gene expression, protein-protein interaction, and pathways, can be useful for scoring novel candidates. Some cancer gene or mutation databases exist for this purpose, but few specialized tools exist for an automated analysis of a long gene list from an HGT-based cancer genomic analysis. This report presents a new web-accessible bioinformatic tool, called CaGe, a cancer genome annotation system for the assessment of candidates of cancer genes from HGT-based cancer genomics. The tool provides users with information on cancer-related genes, mutations, pathways, and associated annotations through annotation and browsing functions. With this tool, researchers can classify their candidate genes from cancer genome studies into either previously reported or novel categories of cancer genes and gain insight into underlying carcinogenic mechanisms through a pathway analysis. We show the usefulness of CaGe by assessing its performance in annotating somatic mutations from a published small cell lung cancer study.
Objective: Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. Methods: We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. Results: As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. Conclusion: In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.
Owing to the generation of vast amounts of sequencing data by using cost-effective, high-throughput sequencing technologies with improved computational approaches, many putative proteins have been discovered after assembly and structural annotation. Putative proteins are typically annotated using a functional annotation system that uses extant databases, but the expansive size of these databases often causes a bottleneck for rapid functional annotation. We developed SFannotation, a simple and fast functional annotation system that rapidly annotates putative proteins against four extant databases, Swiss-Prot, TIGRFAMs, Pfam, and the non-redundant sequence database, by using a best-hit approach with BLASTP and HMMSEARCH.
We have developed a web server for the high throughput annotation of gene. This system processes entire data sets with an automated pipeline of 13 analytic services, then deposits the data into the MySQL database and transforms it into three kinds of reports: preprocessing, assembling and annotation.
Promoter prediction is a very important problem and is closely related to the main problems of bioinformatics such as the construction of gene regulatory networks and gene function annotation. In this context, we developed an integrated promoter prediction program using hybrid methods, PromoterWizard, which can be employed to detect the core promoter region and the transcription start site (TSS) in vertebrate genomic DNA sequences, an issue of obvious importance for genome annotation efforts. PromoterWizard consists of three main modules and two auxiliary modules. The three main modules include CDRM (Composite Dependency Reflecting Model) module, SVM (Support Vector Machine) module, and ICM (Interpolated Context Model) module. The two auxiliary modules are CpG Island Detector and GCPlot that may contribute to improving the predictive accuracy of the three main modules and facilitating human curator to decide on the final annotation.
Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.
Background: Loss of heterozygosity (LOH) on chromosomal regions is crucial in tumor progression and this study aimed to identify genome-wide LOH in pancreatic cancer. Materials and Methods: Single-nucleotide polymorphism (SNP) profiling data GSE32682 of human pancreatic samples snap-frozen during surgery were downloaded from Gene Expression Omnibus database. Genotype console software was used to perform data processing. Candidate genes with LOH were screened based on the genotype calls, SNP loci of LOH and dbSNP database. Gene annotation was performed to identify the functions of candidate genes using NCBI (the National Center for Biotechnology Information) database, followed by Gene Ontology, INTERPRO, PFAM and SMART annotation and UCSC Genome Browser track to the unannotated genes using DAVID (the Database for Annotation, Visualization and Integration Discovery). Results: The candidate genes with LOH identified in this study were MCU, MICU1 and OIT3 on chromosome 10. MCU was found to encode a calcium transporter and MICU1 could encode an essential regulator of mitochondrial $Ca^{2+}$ uptake. OIT3 possibly correlated with calcium binding revealed by the annotation analyses and was regulated by a large number of transcription factors including STAT, SOX9, CREB, NF-kB, PPARG and p53. Conclusions: Global genomic analysis of SNPs identified MICU1, MCU and OIT3 with LOH on chromosome 10, implying involvement of these genes in progression of pancreatic cancer.
생물정보학의 발전으로 다양한 형태의 생물정보가 컴퓨터 프로그램에 의해 양산되고 있다. 단순한 서열간의 비교나 작은 규모의 자료를 처리하기 보다는 다각화된 정보와 대규모의 생물정보를 취급하고 있다. 그 중에서 시각화와 annotation를 위한 도구개발은 지난 10년간 많은 연구가 되고 있는 분야이다. 그럼에도 일반화된 도구 개발은 생물정보의 다양성과 사용자 요구의 다양화로 인해 매우 어렵다. 본 논문에서는 유전체간 알려진 정보와 다중 관계 그래프를 이용하여 이를 annotation하고 시각화하는 GenoVA 시스템을 제안한다. 다중 정렬을 위한 몇 개의 프로그램이 존재하지만 그 방법들이 서열내의 복잡성 때문에 많은 정보가 누락된다. 따라서 제안된 방법에서는 pairwise alignment를 확장하여 모든 유전체간 비교를 통해 연관성 도출한다. 유전체간 보존되는 영역의 빈도수와 BLAST 점수가 높은 것을 블록노드라 하고 이들 간의 연관관계를 다중 관계 그래프로 표현하였다. 또한 GenoVA는 알려진 정보, COG, 유전자를 시각화하고 다중 관계 그래프의 한 영역을 중심으로 클러스터링된 경로를 계층적으로 보여주었다. 이때 누락되거나 알려지지 않은 유전자나 다른 annotation정보 추출할 수 있다. 본 논문의 실험을 위해 열 개의 박테리아 유전체가 사용되었고 시각화와 annotation을 위한 자료로 활용하였다. GenoVA는 새로운 유전체에 대한 개략적이고 전산적 annotation을 직관적이고 편리하게 제공한다.
Park, Ji Yeon;Park, Yu Rang;Park, Chan Hee;Kim, Ji Hoon;Kim, Ju Ha
Genomics & Informatics
/
제3권1호
/
pp.39-42
/
2005
DNA microarray is a high-throughput biomedical technology that monitors gene expression for thousands of genes in parallel. The abundance and complexity of the gene expression data have given rise to a requirement for their systematic management and analysis to support many laboratories performing microarray research. On these demands, we developed Xperanto for integrated data management and analysis using user-friendly web-based interface. Xperanto provides an integrated environment for management and analysis by linking the computational tools and rich sources of biological annotation. With the growing needs of data sharing, it is designed to be compliant to MGED (Microarray Gene Expression Data) standards for microarray data annotation and exchange. Xperanto enables a fast and efficient management of vast amounts of data, and serves as a communication channel among multiple researchers within an emerging interdisciplinary field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.