• Title/Summary/Keyword: gene K-ras

Search Result 101, Processing Time 0.026 seconds

Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1 (마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석)

  • Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Tae-Gyun;Park, Moon-Suk;Lee, Woo-Sun;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

Expression of TIMP1, TIMP2 Genes by Ionizing Radiation (이온화 방사선에 의한 TIMP1, TIMP2 유전자 발현 측정)

  • Park Kun-Koo;Jin Jung Sun;Park Ki Yong;Lee Yun Hee;Kim Sang Yoon;Noh Young Ju;Ahn Seung Do;Kim Jong Hoon;Choi Eun Kyung;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Purpose : Expression of TIMP, intrinsic inhibitor of MMP, is regulated by signal transduction in response to genotoxins and is likely to be an important step in metastasis, angiogenesis and wound healing after ionizing radiation. Therefore, we studied radiation mediated TIMP expression and its mechanism in head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines established at Asan Medical Center were used and radiosensitivity $(D_0)$, radiation cytotoxicity and metastatic potential were measured by clonogenic assay, n assay and invasion assay, respectively. The conditioned medium was prepared at 24 hours and 48 hours after 2 Gy and 10 Gy irradiation and expression of TIMP protein was measured by Elisa assay with specific antibodies against human TIMP. hTIMP1 promoter region was cloned and TIMP1 luciferase reporter vector was constructed. The reporter vector was transfected to AMC-HN-1 and -HN-9 cells with or without expression vector Ras, then the cells were exposed to radiation or PMA, PKC activator. EMSA was peformed with oligonucleotide (-59/-53 element and SP1) of TIMP1 promoter. Results : $D_0$ of HN-1, -2, -3, -5 and -9 cell lines were 1.55 Gy, 1.8 Gy, 1.5 Gt, 1.55 Gy and 2.45 Gy respectively. n assay confirmed cell viability, over $94\%$ at 24hrs, 48hrs after 2 Gy irradiation and over 73% after 10 Gy irradiation. Elisa assay confirmed that cells secreted TIMP1, 2 proteins continuously. After 2 Gy irradiation, TIMP2 secretion was decreased at 24hrs in HN-1 and HN-9 cell lines but after 10 Gy irradiation, it was increased in all cell lines. At 48hrs after irradiation, it was increased in HN-1 but decreased in HN-9 cells. But the change in TIMP secretion by RT was mild. The transcription of TIMP1 gene in HN-1 was induced by PMA but in HN-9 cell lines, it was suppressed. Wild type Ras induced the TIMP-1 transcription by 20 fold and 4 fold in HN-1 and HN-9 respectively. The binding activity to -59/-53, AP1 motif was increased by RT, but not to SP1 motif in both cell lines. Conclusions : We observed the difference of expression and activity of TIMPs between radiosensitive and radioresistant cell line and the different signal transduction pathway between in these cell lines may contribute the different radiosensitivity. Further research to investigate the radiation response and its signal pathway of TIMPs is needed.

  • PDF

Associations Between RASSF1A Promoter Methylation and NSCLC: A Meta-analysis of Published Data

  • Liu, Wen-Jian;Tan, Xiao-Hong;Guo, Bao-Ping;Ke, Qing;Sun, Jie;Cen, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3719-3724
    • /
    • 2013
  • Background: RASSF1A has been reported to be a candidate tumor suppressor in non-small cell lung cancer (NSCLC). However, the association between RASSF1A promoter methylation and NSCLC remains unclear, particularly in regarding links to clinicopathologic features. Methods: Eligible studies were identified through searching PubMed, EMBASE, Cochrane Library and China National Knowledge Infrastructure (CNKI) databases. Studies were pooled and odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Funnel plots were also performed to evaluate publication bias. Results: Nineteen studies involving 2,063 cases of NSCLC and 1,184 controls were included in this meta-analysis. A significant association was observed between RASSF1A methylation and NSCLC in the complete data set (OR = 19.42, 95% CI: 14.04-26.85, P < 0.001). Pooling the control tissue subgroups (heterogeneous/autologous) gave pooled ORs of 32.4 (95% CI, 12.4-84.5) and 17.7 (95% CI, 12.5-25.0) respectively. Racial subgroup (Caucasian/Asian) analysis gave pooled ORs of 26.6 (95% CI, 10.9-64.9) and 20.9 (95% CI, 14.4-30.4) respectively. The OR for RASSF1A methylation in poorly-differentiated vs. moderately/well-differentiated NSCLC tissues was 1.88 (95% CI, 1.32-2.68, P<0.001), whereas there were no significant differences in RASSF1A methylation in relation to gender, pathology, TNM stage and smoking behavior among NSCLC cases. Conclusion: This meta-analysis suggests a significant association between RASSF1A methylation and NSCLC, confirming the role of RASSF1A as a tumor suppressor gene. Large-scale and well-designed case-control studies are needed to validate the associations identified in the present meta-analysis.

RalA-binding Protein 1 is an Important Regulator of Tumor Angiogenesis (Tumor angiogenesis에 있어서 RLIP76의 중요성)

  • Lee, Seunghyung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Tumor angiogenesis is important in tumorigenesis and therapeutic interventions in cancer. To know inhibitor and effector of tumor angiogenesis in cancer, the specific gene of tumor and angiogenesis may develop the mechanisms of cancer suppression and therapy. Recently, we described the role of RalA-binding protein 1 (RLIP76) in tumor angiogenesis. Tumor vascular volumes were diminished, and vessels were fewer in number, shorter, and narrower in RLIP76 knockout mice than in wild-type mice. Moreover, angiogenesis in basement membrane matrix plugs was blunted in the knockout mice in the absence of tumor cells, with endothelial cells isolated from the lungs of these animals exhibiting defects in migration, proliferation, and cord formation in vitro. RLIP76 is expressed in most human tissues and is overexpressed in many tumor types. In addition, the protein regulates tumorigenesis and angiogenesis in vivo and in vitro. As the export of chemotherapy agents is a prominent cellular function of RLIP76, it is a major factor in mechanisms of drug resistance. Moreover, RLIP76 acts as a selective effector of the small GTPase, R-Ras, and regulates R-Ras signaling, leading to cell spreading and migration. Furthermore, in skin carcinogenesis, RLIP76 knockout mice are resistant, with tumors that form showing diminished angiogenesis. Thus, RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.

Association Study Between the C3123A Polymorphism of the Angiotensin II Type 2 Receptor Gene in the Human X Chromosome and Essential Hypertension in Koreans (한국인에서 Angiotensin II Type 2 Receptor 유전자에 존재하는 C3123A 다형선과 본태성 고혈압과의 관련성에 관한 연구)

  • Kang Byung Yong;Bae Joon Seol;Lee Kang Oh
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Renin-angiotensin system (RAS)은 혈압 조절에 중요한 역할을 수행하는 생리적 조절계로써, 이 system 을 구성하는 유전자들의 이상은 본태성 고혈압의 발병과 유의하게 관련된 것으로 알려졌다. RAS의 주요한 구성 성분인 angiotensin II는 2종류의 수용체인 angiotensin II type I receptor(AT₁R)와 angiotensin II type I receptor(AT₂R)에 의해 그 효과가 매개되기 때문에, 이 수용체를 암호하는 유전자는 본태성 고혈압의 유력한 후보 유전자라고 볼 수 있다. 현재가지의 연구에 의하면, AT₁R 유전자에 존재하는 유전적 변이와 본태성 고혈압과의 관련성에 관해서는 많은 보고들이 있었지만, AT₂R 유전자에 존재하는 유전적 변이 가 본태성 고혈압에 유의한 효과를 나타내는 지에 관해서는 이렇다할 연구 성과가 별로 없는 실정이다. 이에 본 연구에서는 한국인 집단을 대상으로 하여, AT₂R 유전자에 존재하는 C3123A 다형성이 한국인 집단에서 본태성 고혈압과 유의한 관련성이 있는 지를 분석하였다. 이 유전자는 인간의 X 염색체에 존재하기 때문에, 여성인 경우에는 CC, CA및 AA로 이루어진 3유전자형이 존재하지만, 남성인 경우에는 C와 A로 이루어진 2종류의 대립 유전자로 구성되어 있기 때문에, 본 연구에서는 남성과 여성을 개별적으로 나누어서 분석하였다. 연구 결과, AT₂R 유전자에 존재하는 C3123A 다형성은 남녀 모두에서 본태성 고혈압과 유의한 관련성을 나타내지 않았다(P>0.05). 그렇지만, 이 다형성에 대한 대립 유전자 빈도를 서양인 집단과 비교했을 경우에는, 한국인을 대상으로 한 본 연구에서 A 대립 유전자 빈도가 0.33인 반면에 서양인 집단은 그 빈도가 0.43~0.48로 한국인 집단보다 높은 값을 나타내었다. 따라서, AT₂R 유전자에 존재하는 C3123A 다형성과 본태성 고혈압과의 관련성에 대해서는 한국인과 유전적 배경이 다른 서양인 집단을 대상으로 한 추시가 필요할 것으로 사료된다.

Development of Thyroid Tumors by Carcinogens and Its Expression of p21 & p53 Protein in Rats (흰쥐에서 발암물질로 유발된 갑상선 종양과 p21 및 p53 단백질의 발현)

  • Baek Jong-Min;Chang Suk-Kyun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.15 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • Objectives: The development of thyroid tumor has a relationship with carcinogen, oncogene and tumor suppressor gene. With aminotriazole, radioactive iodine and nitrosomethylurea as carcinogens in rat, authors investigate the incidence in type of the thyroid tumors, p21 and p53 protein expression pattern by immunohistochemical stain and the relationship between the tumors and p21-p53 protein expressions. Materials and Methods: 80 experimental animals were divided into four groups; group 1(control, no carcinogen, n=20), group 2(oral administration of aminotriazole for 36 weeks, n=20), group 3(intraperitoneal injection of 131I for one time and oral administration of aminotriazole for 36 weeks, n=20), group 4(oral administration of nitrosomethylurea for 3 days and aminotriazole for 36 weeks, n=20). After 40 weeks they were sacrificed with pathologic examination and we performed immunohistochemical staining with pan-ras monoclonal antibody for p21 protein and CMI polyclonal antibody for p53 protein with paraffin-embedded specimens. Results: 1) No tumors were observed in group I, but 38.3% of nodular goiters, 11.7% of adenomas and 50.0% of carcinomas were observed in carcinogen treated groups(group 2, 3, 4). 2) The incidence of nodular goiter, adenoma and carcinoma were 70%, 20% and 10% in group 2, 40%, 15% and 45% in group 3 and 5%, 0% and 95% in group 4. 3) p21 protein was not expressed in normal thyroid tissues but was expressed in 26.1% of nodular goiters, 42.9% of adenomas and 6.7% of carcinomas. On the other hands, p53 protein was not expressed in normal thyroid tissues, nodular goiters, adenomas and in well differentiated thyroid carcinomas by immunohistochemical stain. Conclusion: The authors suggest that aminotrizole, 131I, nitrosomethylurea can be etiologic agents in the development of thyroid tumor and the p21 protein can be expressed in the early stage and in benign condition of thyroid tumor but p53 protein is not expressed in all conditions of development in rats.

  • PDF

Angiotensinogen gene M235T polymorphism as a predictor of cardiovascular risk in hypertensive adolescents (고혈압 청소년의 심혈관계 위험요소로서 Angiotensinogen M235T 유전자 다형)

  • Gil, Joo Hyun;Lee, Jung Ah;Park, Eun Young;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.36-43
    • /
    • 2009
  • urpose : The renin-angiotensin system (RAS) has been demonstrated to play a major role in regulating blood pressure. Therefore, components of the RAS are likely candidate genes that may predispose an individual to essential hypertension and cardiovascular complications. Among them, the M235T polymorphism of the angiotensinogen gene has been speculated to be associated with elevated circulating angiotensinogen concentrations and essential hypertension. This study aimed to analyze the angiotensinogen M235T polymorphism in hypertensive adolescents and investigate its relationship with cardiovascular risks. Methods : Forty Korean hypertensive adolescents (aged 16-17, systolic $BP{\geq}140 mmHg$ and/or diastolic $BP{\geq}90 mmHg$) and fifty seven normal adolescents were included. Obesity index (OI), body mass index (BMI) were calculated. BP was measured by oscillometric methods in resting state. Polymerase chain reaction (PCR) technique was performed on DNA from the hypertensives subjects to analyze the M235T polymorphism. Serum homocysteine, insulin, renin, aldosterone and angiotensin converting enzyme (ACE) were tested according to each genotype. The carotid intima-media thickness (IMT) and carotid artery diameter, Pulse wave velocity (PWV) and ankle-brachial index (ABI) were measured according to each genotype. Results : Genotype frequencies of T/T, M/T and M/M were 62.5%, 35.0%, 2.5%, respectively in hypertensive adolescents. The results were not significantly different compared to control group. Serum insulin, renin levels, BMI and OI were significantly higher in thoses with the M/M genotype as compared to those with the T/T of M/T genotype. Conclusion : This study showed that the M235T polymorphism was not associated with essential hypertension or any cardiovascular risks. Further clinical research is required to ascertain the relationship between this polymorphism and cardiovascular complications in Korean hypertensive adolescents.

Promoter Polymorphism of RRM1 Gene in Korean Lung Cancer Population (한국인 폐암 환자에서 RRM1 유전자 Promoter의 다형성)

  • Ko, Kyung Haeng;Kim, Eun Joung;Oh, In Jae;Kim, Soo Ock;Son, Jun Gwang;Jung, Jong Pil;Cho, Gye Jung;Ju, Jin Young;Kim, Kyu Sik;Kim, Yu Il;Lim, Sung Chul;Kim, Young Chul;Bepler, Gerold
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.3
    • /
    • pp.248-255
    • /
    • 2006
  • Background: LOH11A is a region with frequent allele loss (>75%) in lung cancer that is located on the centromeric part of chromosome 11p15.5. Clinical and cell biological studies suggest that this region contains a gene associated with metastatic tumor spread. RRM1 encoding the M1 subunit of ribonucleotide reductase, which is an enzyme that catalyses the rate-limiting step in deoxyribonucleotide synthesis, is located in the LOH11A region. Methods: Polymorphisms were found at nucleotide position (-)37 (C/A) and (-)524 (C/T) from the beginning of exon 1 of the RRM1 gene that might regulate the expression of RRM1. We studied the polymorphisms in 127 Korean individuals (66 lung cancer and 61 normal controls) and compared with those of 140 American patients with lung cancer. Results: CC, AC and AA were found at the (-)37 position in 64(50.4%), 55(43.3%), and 8(6.3%) out of 127 Korean individuals (66 cancer, 61 non-cancer patients), respectively. There was a similar frequency of allele A at (-)37 in the American(27.9%) and Korean population(28.0%). CC, CT and TT was found at the (-)524 position in 24(18.9%), 44(34.6%), and 59(46.5%) out of the 127 Korean individuals, respectively. There was a similar frequency of allele C at (-)524 in the American(34.6%) and Korean population(36.2%). There was no difference in the frequency of the (-)37 and (-)524 genotypes between the cancer and non-cancer group. However there was a significant correlation of the genotypes between (-)37 and (-)524 (p<0.001), which suggests the possible coordination of these polymorphisms in the regulation of the promoter activity of the RRM1 gene. Conclusion: RRM1 promoter polymorphisms were not found to be significant risk factors for lung cancer. However, a further study of the promoter activity and expression of the RRM1 gene according to the pattern of the polymorphism will be needed.