Gene set analysis is a new concept and method. to analyze and interpret microarray gene expression data and tries to extract biological meaning from gene expression data at gene set level rather than at gene level. Compared with methods which select a few tens or hundreds of genes before gene ontology and pathway analysis, gene set analysis identifies important gene ontology terms and pathways more consistently and performs well even in gene expression data sets with minimal or moderate gene expression changes. Moreover, gene set analysis is useful for comparing multiple gene expression data sets dealing with similar biological questions. This review briefly summarizes the rationale behind the gene set analysis and introduces several algorithms and tools now available for gene set analysis.
Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named "BOolean Operation-based Screening and Testing" (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.
Gene therapy has emerged as a new concept of therapeutic strategies to treat diseases which do not respond to the conventional therapies. The principle of gene therapy is to Introduce genetic materials into patient cells to produce therapeutic proteins in these cells. Gene therapy is now at the stage where a number of clinical trials have been carried out to patients with gene-deficiency disease or cancer. Genetic materials for gene therapy are generally composed of gene expression system and gene delivery system. For the clinical application of gene therapy in a way which conventional drugs are used, researches have been focused on the design of gene delivery system which can offer high transfection efficiency with minimal toxicity. Currently, viral delivery systems generally provide higher transfection efficiency compared with non-viral delivery systems while non-viral delivery systems are less toxic, less immunogenic and manufacturable in large scale compared with viral systems. Recently, novel strategies towards the design of new non-viral delivery system, combination of viral and non-viral delivery systems and targeted delivery system have been extensively studied. The continued effort in this area will lead us to develop gene medicine as "gene as a drug" in the near future.
This paper investigates construction of gene (interaction) networks from gene expression time-series data based on evolutionary computation. To illustrate the proposed approach in a comprehensive way, we first assume an artificial gene network and then compare it with the reconstructed network from the gene expression time-series data generated by the artificial network. Next, we employ real gene expression time-series data (Spellman's yeast data) to construct a gene network by applying the proposed approach. From these experiments, we find that the proposed approach can be used as a useful tool for discovering the structure of a gene network as well as the corresponding relations among genes. The constructed gene network can further provide biologists with information to generate/test new hypotheses and ultimately to unravel the gene functions.
Gene therapy involves the introduction of foreign genetic material into host tissue to alter the expression of genetic products. Gene therapy represents an opportunity to alter the course of various diseases. Hence, genetic products utilizing safe and reliable vectors with improved biotechnology will play a critical role in the treatment of various diseases in the future. This review summarizes various important vectors for gene therapy along with modern techniques for potential craniofacial regeneration using gene therapy. This review also explains current molecular approaches for the management and treatment of cancer using gene therapy. The existing literature was searched to find studies related to gene therapy and its role in craniofacial regeneration and cancer treatment. Various databases such as PubMed, Science Direct, Scopus, Web of Science, and Google Scholar were searched for English language articles using the keywords "gene therapy," "gene therapy in present scenario," "gene therapy in cancer," "gene therapy and vector," "gene therapy in diseases," and "gene therapy and molecular strategies."
Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.
배아줄기세포를 이용한 형질전환동물의 제조는 유전자의 기능 연구에 필수적이다. 특히 유전자 파괴 생쥐는 유전자의 기능 연구뿐만 아니라 사람 질병 연구에 중요한 모델이 되어 왔다. 유전자 적중법(gene targeting)과 유전자 함정법(gene trapping)은 ES 세포에서 녹아웃(knockout) 생쥐를 제조하는 대표적인 방법이다. 20여 년 전 유전자 적중법과 함정법이 최초로 개발된 이후에 이 기술은 많은 변화를 거쳤다. 특히 상동재조합에 기초한 전통적 유전자 적중법은 대량 제조기반의 조건부 유전자 적중법의 개발로 이어졌고, 유전자 적중법 및 유전자 함정법의 장점 요소의 조합은 유전자를 파괴하는 범위를 넓혔고, 유전자 적중을 더욱 효율적으로 만들었다. 이런 기술은 특정 유전자를 표적으로 하는 다양한 종류의 돌연변이 형질전환동물을 제조할 수 있게 하여 포스트게놈 시대에 요구되는 전체 유전체의 기능 연구를 더욱 효과적으로 진행시켜 줄 것이다.
Gene therapy is to treat and cure diseases by an introduction of therapeutic genes in defective cells or tissues of human body. Gene delivery system, gene expression system, and therapeutic gene are three core elements for gene therapy. The efficient delivery of therapeutic genes and appropriate gene expression are the crucial issues for therapeutic outcome of gene delivery. Because it can be used in common for the treatment and cure of various diseases, gene delivery system is the most important core element for a successful gene therapy. Viruses are naturally evolved to transfer their genomes into host cells efficiently. This ability has made vectorologists exploit viruses as attractive vehicles for the delivery of therapeutic genes. Viral vectors based on adenovirus (Ad) and adeno-associated virus (AAV) have been often used for gene delivery in laboratory. Ad and AAV vectors derived from human DNA viruses differ greatly in their life cycle, expression level and duration of transgenes, immunogenicity, and vector preparation. Both vectors can be used as effective tools for gene therapy and more recently in functional genomics. Here, the characteristics of Ad and AAV vectors are discussed.
Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.
Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.