Browse > Article

Informative Gene Selection Method in Tumor Classification  

Lee, Hyosoo (Department of Biological Science, Sookmyung Women's University)
Park, Jong Hoon (Department of Biological Science, Sookmyung Women's University)
Abstract
Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.
Keywords
gene expression; gene selection; gene shaving; microarray; tumor classification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alon, U., Barkai, N., Notterman, D. A, Gish, K., Ybarra, S., Mack, D., and Levine, A J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat!. Acad. SCi. USA 96, 6745-6750   DOI   ScienceOn
2 Bies, J., Nazarov, V., and Wolff, L. (1999). Identification of protein instability determinants in the carboxy-terminal region of c-Myb removed as a result of retroviral integration in murine monocytic leukemias. J. Virol. 73, 2038-2044   PUBMED
3 Frater, J. L., Yaseen, N. R, Peterson, L. C., Tallman, M. S., and Goolsby, C. L. (2003). Biphenotypic acute leukemia with coexpression of CD79a and markers of myeloid lineage. Arch. Pathol. Lab Med. 127, 356-359   PUBMED
4 Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906-914.   DOI   ScienceOn
5 Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T., Pergamenschikov, A., Williams, C. F., Zhu, S. X.. Lee. J. C.. Lashkari. D., Shalon. D., Brown. P.O., and Botstein, D. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci, USA 96, 9212-9217   DOI   ScienceOn
6 Xiong, M., Li, W., Zhao, J., Jin, L., and Boerwinkle, E. (2001), Feature (gene) selection in gene expression-based tumor classification. Mol, Genet. Metab. 73, 239-247   DOI   ScienceOn
7 LeBrun, D. P. (2003). E2A basic helix-loop-helix transcription factors in human leukemia. Front. Biosci. 8, s206-222   DOI   PUBMED
8 Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares, M., Jr., and Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. SCi, USA. 97, 262-267   DOI   ScienceOn
9 Golub, T. R, Sionim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R, Caligiuri, M. A, Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537   DOI   PUBMED   ScienceOn
10 Lai, R, Juco, J., Lee, S. F., Nahirniak, S., and Etches, W. S. (2000). Flow cytometric detection of CD79a expression in T-cell acute lymphoblastic leukemias. Am. J. Clin. Pathol. 113, 823-830   DOI   ScienceOn
11 Ho, A. D., Fiehn, W., and HUnsiein, W. (1984). Plasma and intracellular levels of lactate dehydrogenase, phosphohexose isomerase and lysozyme activity in acute leukemia. Blut. 49, 19-28   DOI   ScienceOn
12 Juarez, J., Bradstock, K. F., Gottlieb, D. J., and Bendall, L. J. (2003). Effects of inhibitors of the chemokine receptor CXCR4 on acute
13 Bies, J. and Wolff, L. (1997). Oncogenic activation of c-Myb by carboxyl-terminal truncation leads to decreased proteolysis by the ubiquitin-26S proteasome pathway. Oncogene 14, 203-212   DOI   ScienceOn
14 lymphoblastic leukemia cells in vitro. Leukemia 17, 1294-1300   DOI   ScienceOn
15 Aulbert, E. and Schmidt, C. G. (1985). Ferritin--a tumor marker in myeloid leukemia. Cancer Detect. Prevo 8, 297-302
16 Hastie, T., Tibshirani, R, Eisen, M. B., A1izadeh, A, Levy, R, Staudt, L, Chan, W. C., Botstein, D., and Brown, P. (2000). 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome BioI. 1, RESEARCH0003
17 Hamann, P. R, Hinman, L. M., Hollander, I., Beyer, C. F., Lindh, D., Holcomb, R, Hallett, W., Tsou, H. R, Upeslacis, J., Shochat, D., Mountain, A., Flowers, D. A, and Bernstein, I. (2002). Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47-58.
18 Parisi, E., Draznin, J., Stoopler, E., Schuster, S. J., Porter, D., and Sollecito, T. P. (2002). Acute myelogenous leukemia: advances and limitations of treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 93, 257-263   DOI   ScienceOn
19 Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lassos, I. S., Rosenwald, A, BoIdrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Jr" Lu, L., Lewis, D. B., Tibshirani, R, Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R, Levy, R, Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P.O., and Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511Ā삟?⨀Ā삟?⨀ࠀࠀ椀대჉?⨀ᕖࠄఀ܀ᣌᆭĀ삟?⨀Ā삟?⨀椀대飉?⨀ᕖࠄఀ܀ᇌᆭĀ삟?⨀Ā삟?⨀椀대Ê?⨀ᕖࠄ䐀Ā჌ᆭĀ삟?⨀Ā삟?⨀넀댐棊?⨀띑ࠄᣋ?⨀㣞?⨀̀̀耀 ㌀띑ࠄ⃋?⨀룏?⨀ĀᘀԀ磏?⨀ఀ Ԁビ?⨀Ȁ᠀Ԁ餂돀梼?⨀恩?⨀恩?⨀/ࠀ裟?⨀섁덀쀁裟?⨀耂Ѐ歸猠桥慰ソソソソ頀壌?⨀壌?⨀᠁烌?⨀烌?⨀᠂裌?⨀裌?⨀᠄ꃌ?⨀ꃌ?⨀裟?⨀耂Іဎ歸猠晲慭攠桥慰ソソソソꀁ⣍?⨀⣍?⨀ 䃍?⨀䃍?⨀ 壍?⨀壍?⨀‐烍?⨀烍?⨀䤀돀샋?⨀   DOI   ScienceOn
20 Liu, J., Zeng, H., and Zhang, Y. (1999). [Study on the expression of interleukin-8 and its receptors in acute leukemia]. Zhonghua Xue Ye Xue Za Zhi 20, 24-26   PUBMED
21 Wex, H., Ponelis, E., Wex, T., Dressendorfer, R., Mittler, U., and Vorwerk, P, (2002), Plasma leptin and leptin receptor expression in childhood acute lymphoblastic leukemia. Int. J. Hematol. 76, 446-452   DOI   ScienceOn
22 Kroon, E., Krosl, J., Thorsteinsdottir, U., Baban, S., Buchberg, A. M., and Sauvageau, G. (1998). Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. Embo J. 17, 3714-3725   DOI   ScienceOn
23 Sonoki, T., Harder, L., Horsman, D. E., Karran, L., Taniguchi, I., Willis, T. G., Gesk, S., Steinemann, D., Zucca, E., Schlegelberger, B., Sole, F., Mungall, A. J., Gascoyne, R. D., Siebert, R., and Dyer, M. J, (2001), Cyclin D3 is a target gene of t(6;14)(P21,1;q32.3) of mature B-cell malignancies. Blood 98, 2837-2844   DOI   ScienceOn