• 제목/요약/키워드: gear train

검색결과 181건 처리시간 0.029초

입력분기방식 하이브리드 전기자동차의 구동계 구조에 따른 동력 성능 비교 분석 (Comparative Study of Different Drive-train Driving Performances for the Input Split Type Hybrid Electric Vehicle)

  • 김정민
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.69-75
    • /
    • 2017
  • In this study, the performances of five input split type hybrid electric vehicle sub-drivetrains were analyzed. The five sub-drivetrains consist of chain, helical gears and planetary gears. For the analyzing above five sub-drivetrains, the mathematical equations were derived. From the analysis, we found that the sub-drivetrain with chain shows slower acceleration performance and larger energy consumption on the city driving. And, the sub-drivetrain with only helical gear shows smallest energy consumption on the city driving. If the sub-drivetrain can change its gear speed, it shows fastest acceleration performance, but it has largest energy consumption on the city driving due to its additional auxiliary components.

마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구 (Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit)

  • 장정환;진진;김동선;우위팅;류성기
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

중형 풍력발전기 피치 드라이브의 유성기어 경량화에 관한 연구 (A Study on Mass Reduction of Planetary Gear in Pitch Drive of Medium-sized Wind Turbine)

  • 박성규;신유인;김동명;송철기
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.5-10
    • /
    • 2017
  • Pitch drive system in wind turbine is composed by the planetary gear system to satisfied its required performance such as long life and light weight for gear train. When the planetary gear system can reduce its volume and weight, the power consumption of the wind turbine can be reduced. In this study, the planetary gear system of the pitch drive system in medium-sized wind turbine is obtained for weight reduction by shape optimization method. And the planetary gear system is verified for their strength by the structural analysis.

유성기어박스의 진동특성에 관한 연구 (A Study on the Vibrational Characteristics of a Gearbox for Epicyclic Gear Train)

  • 이동환;윤인성;천길정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.837-842
    • /
    • 2000
  • In this Paper, the vibrational characteristics of a gearbox for epicyclic Rear train have been studied The modal parameters and mode shapes of a gearbox have been computed using ANSYS code. Modal testing was carried out to verity the FEM analysis model. It has been shown that the analysis results are m good agreements with the experimental results. Harmonic analysis has been executed to verify the effect of thickness variance of gearbox housing on the modal response. Analyzing the calculated results, some guides fer optimal vibration response has been deduced.

  • PDF

차세대전동차용 직접구동전동기 개발 (Development of Direct Drive Motor for Next Generation Train)

  • 김길동;이한민;이장무;오세찬;정의진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.688-694
    • /
    • 2009
  • As a drive system for next generation train, we have been making research and development of a direct drive traction motor system without the conventional reduction gear. This traction motor is expected to have many advantages such as low noise, reduced maintenance, and energy saving. Due to the demand for high-output motors in the limited space between the wheels, open-ventilating traction motors with gear box have been widely used for many years. However, a conventional open-ventilating traction motor is necessary periodical disassembly to remove the accumulated dust from open-air ventilation. Reducing this burden, as well as increasing energy efficiency and reducing noise, would benefit the next generation of traction motors. To address these needs, KRRI have been developing a fully enclosed type direct drive motor(DDM) with high-efficiency permanent magnet for the next generation train.

  • PDF

선진사 트랙터 자동변속기 설계 분석 (Automatic Transmission Design Analysis of the Tractor from Advanced Company)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.7-13
    • /
    • 2013
  • A tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. As the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. Though manual and power shuttle transmissions are produced by domestic corporations, development for full-automatic power shift transmissions has never been challenged, and so related technology level is quite low. This paper gives a survey of the automatic transmissions from advanced foreign company, which includes layout of gear train, the way hydraulics controls clutches and brakes, electronic control system. The results are expected to be utilized as a basis in the development of original power train design for tractor.

Analysis of the load distribution and contact safety factor of PTO gears of a 71 kW class agricultural tractor

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yeon-Soo;Lee, Nam-Gyu;Kim, Nam-Hyeok;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제47권2호
    • /
    • pp.327-335
    • /
    • 2020
  • The purpose of this study was to analyze the load distribution and contact safety factor for the power take off (PTO) gear of a 71 kW class agricultural tractor. In this study, a simulation model of the PTO gear-train was developed using Romax DESGINER. The face load factor and contact safety factor were calculated using ISO 6336:2006. The simulation time was set at 2,736 hours considering the lifetime of the tractor, and the simulation was performed for each PTO gear stage at the engine rated power conditions. As a result of the simulation, the face load factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.644, 1.632, and 1.341, respectively. The contact safety factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.185, 1.216, and 1.458, respectively. As the PTO gear stage was increased, the face load factor decreased, and the contact safety factor increased. The load distributions for all the PTO gears were concentrated to the right of the tooth width. This causes stress concentrations and shortens the lifespan of the gears. Therefore, it is necessary to improve the face load factor and the contact safety factor with macro-geometry and micro-geometry.

전기자동차용 2속 변속기의 경량 최적 설계 (Optimal Design of Lightweight Two-Speed Transmission of Electric Vehicles)

  • 최재훈;서준호;박노길
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.96-104
    • /
    • 2020
  • The electric vehicle industry is rapidly developing because of enforced environmental regulations, and several studies have been conducted on the multispeed transmission to improve the fuel efficiency of electric vehicles. Among these studies, research on the power density improvement of electric vehicle transmission is critical. Thus, the optimal design of the gear train is necessary to enhance transmission efficiency. In this study, an optimal design methodology for the lightweight two-speed transmission of electric vehicles is proposed. Because a multispeed transmission has many operating conditions and equality and inequality constraints, a new gear design method that combines analytical and iterative methods is applied without using complex optimization algorithms. Sets of possible design variables are generated considering the operating conditions and various design variables. The modules and face width ratios of each stage gear that satisfy the corresponding operating conditions are analytically calculated. The volume of the gear train is calculated, evaluated, and arranged using these values to determine the optimal solution for minimizing the volume, and the proposed methodology is applied to the actual model to verify its effectiveness. The design of a two-speed transmission with multiple operating conditions and constraints without complicated optimization algorithms can be optimized.