• Title/Summary/Keyword: gear train

Search Result 181, Processing Time 0.028 seconds

The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance (SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석)

  • Lee, Daeheung;Jeong, Jongryeol;Park, Yeongil;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.

Development of Transmission Simulator for High-Speed Tracked Vehicles (고속 무한궤도 차량용 변속기 시뮬레이터 개발)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2017
  • Electronic control technologies that have long been developed for passenger cars spread to construction equipment and agricultural vehicles because of its outstanding performance achieved by embedded software. Especially, system program of transmission control unit (TCU) plays a crucial role for the superb shift quality, driving performance and fuel efficiency, etc. Since the control algorithm is embedded in software that is rarely analyzed, development of such a TCU cannot be conducted by conventional reverse engineering. Transmission simulator is a kind of electronic device that simulates the electric signals including driver operation command and output of various sensors installed in transmission. Standalone TCU can be run in normal operation mode with the signals provided by transmission simulator. In this research, transmission simulator for the tracked vehicle TCU is developed for the analysis of shift control algorithm from the experiments with standalone TCU. It was confirmed that shift experimental data for the simulator setup conditions can be used for the analysis of control algorithms on proportional solenoid valves and shift map.

A Study on the Mold System of Bicycles Gear for Driving Safety (주행 안전을 위한 자전거 기어의 프레스금형에 관한 연구)

  • Jeong, Youn-Seung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • Recently, bicycle has means of effective healthy transportation, and riding the bicycles is considered as popular recreational and sporting activities. Also, the saddle, steering system, driving device and braking device are researched briskly because of consumer's need for driving performance and comfort. Especially, the importance of a cassette responsible for transmission function by transmitting power to the drive shaft through the chain is very focused. The writer conducted structural analysis for the sprocket of each level using the ANSYS widely used for the analysis. Speed shifting performance was enhanced by minimization / simplification of shifting point through a sort of tooth profile of the cassette. By partitioning a clear value type and other shifting point, it has been modified to enable smooth speed-shifting. In addition, as titanium precision forming process, this study studied the molding technique by blanking and dies forging for mass production of the cassette. so it could be expected that the entire drive train would utilize that in the future. The stamping process capability for thin materials for the mass production of the sprockets is applicable to producing automobile parts, so lightweight component production is likely to be possible through that, for the safety of driving.

Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift (지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구)

  • Jun-Young Kim;Yeong Jun Yu;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

A Study on Prediction of Overriding Behavior Leading Vehicle in Train Collision (철도차량 충돌시 선두차량의 타고오름량 예측 연구)

  • Kim, Jun Woo;Koo, Jeong Seo;Kim, Geo Young;Park, Jeong Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.711-719
    • /
    • 2016
  • In this study, we derived an theoretical equation, using a simplified spring-mass model for the rolling stock, to obtain the overriding behavior of a leading vehicle, which is considered as the main factor in train accidents. To verify the derived equation, we created a simple 2D model based on the theoretical model, and a simple 3D model considering the characteristics of the power bogie. We then compared the theoretical results with the simulation results obtained using LS-DYNA. The maximum relative derivations in the vertical displacements at the first end-buffer, which is the most important point in overriding, were 3.5 [%] and 1.7 [%] between the two results. Further, we evaluated collision-induced overriding displacements using the theoretical equation for a rubber draft gear, a hydraulic buffer under various collision conditions. We have suggested a theoretical approach for the realization of overriding collision accidents or the energy absorption design of the front end of trains.

Accelerated Life Analysis and Endurance Verification of Electro-Mechanical Actuator (항공기용 전기식 날개 구동장치의 가속 수명 분석 및 시험을 통한 내구성 검증)

  • Huh, Seok Haeng;Lee, Byung Ho;Seol, Jin Woon;Baek, Joo Hyun;Yang, Myung Seok;Kwon, Jun Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.829-835
    • /
    • 2016
  • Electro-Mechanical Actuator installed on the aircraft plays a key role in an aircraft's flight control through flight control computer. Reliable prediction of the actuator is important for the aircraft. To estimate the lifetime of a product, it is necessary to test full target life. However, it is very difficult to perform it due to the long life time of actuator but short period of development time with increasing cost. Therefore, accelerated life test has been used to reduce the test time for various reasons such as reducing product's development cycle and cost. In this paper, to predict the lifetime of the actuator, we analyzed the flight profile of aircraft and adapted the method of accelerated life test in order to accelerate failure modes that might occur under user conditions. We also set up an endurance test equipment for validating the demanded lifetime of an actuator and performed accelerated life test.

HPA Structure Design and Power Measurement (인간동력항공기 구조설계와 동력측정)

  • Lee, Chung-Ryul;Park, Ju-Won;Go, Eun-Su;Choi, Jong-Soo;Kim, In-Gul;Kim, Byoung-Soo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • The process of designing and building a human-powered aircraft (HPA) and its performance analysis are introduced in this paper. Light Bros, the Chungnam National University HPA team, has developed Volante, a HPA, to compete in the 2012 exhibition of human-powered aircraft hosted by Korea Aerospace Research Institute. The power train system is composed of a two-blade propeller and Bevel-type gear and the ground test bed is built to simulate the operation. A study has been made to find a efficient propeller based upon the test result of thrust and power available from a pilot under various propeller conditions and running time. The load and structural analysis is conducted for the glider-shaped wing made of composite material which has very high aspect ratio. The spar is analyzed using finite element modeling followed by the comparison of its displacement and strain on structural test. As a result, the performance and safety is confirmed.

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

A Study on Position Detection in Gears in Automatic Production of Geared Shaft (기어의 생산자동화를 위한 기어의 위치정보 검출에 관한 연구)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2223-2228
    • /
    • 2014
  • Available shafts with gears at each end of the cylinder-shaped steel are widely used as power train components for automobiles. In order to automate the production of a geared shaft, there are problems to be solved. After one side of the cylinder is cut in gears, one of the problems is to determine the position of the cylinder which has been already cut. The shaft is then to be fed ahead with geared position to the chuck with jaws in geared shape. The other problem is to acquire information on an angular position of the shaft to fit to the jaws of the chuck. This paper deals with the magnetic detection sensor of gear position. Coils are installed in two places. Self-inductances of coils are detected by the changes of reluctance and are then compared. The magnetic analysis also has been carried out by the finite element analysis (FEM).