• 제목/요약/키워드: gaussian process regression

검색결과 80건 처리시간 0.035초

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • 제28권4호
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.

Prediction of duration and construction cost of road tunnels using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Nejati, Hamid Reza;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.65-75
    • /
    • 2022
  • Time and cost of construction are key factors in decision-making during a tunnel project's planning and design phase. Estimations of time and cost of tunnel construction projects are subject to significant uncertainties caused by uncertain geotechnical and geological conditions. The Gaussian Process Regression (GPR) technique for predicting ground condition and construction time and cost of mountain tunnel projects is used in this work. The GPR model is trained with data from past mountain tunnel projects. The model is applied to a case study in which the predicted time and cost of tunnel construction using the GPR model are compared with the actual construction time and cost for model validation and reducing the uncertainty for the future projects. In addition, the results obtained from the GPR have been compared with to other models of artificial neural network (ANN) and support vector regression (SVR) that the GPR model provides more accurate results.

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.

Gaussian process regression model to predict factor of safety of slope stability

  • Arsalan, Mahmoodzadeh;Hamid Reza, Nejati;Nafiseh, Rezaie;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.453-460
    • /
    • 2022
  • It is essential for geotechnical engineers to conduct studies and make predictions about the stability of slopes, since collapse of a slope may result in catastrophic events. The Gaussian process regression (GPR) approach was carried out for the purpose of predicting the factor of safety (FOS) of the slopes in the study that was presented here. The model makes use of a total of 327 slope cases from Iran, each of which has a unique combination of geometric and shear strength parameters that were analyzed by PLAXIS software in order to determine their FOS. The K-fold (K = 5) technique of cross-validation (CV) was used in order to conduct an analysis of the accuracy of the models' predictions. In conclusion, the GPR model showed excellent ability in the prediction of FOS of slope stability, with an R2 value of 0.8355, RMSE value of 0.1372, and MAPE value of 6.6389%, respectively. According to the results of the sensitivity analysis, the characteristics (friction angle) and (unit weight) are, in descending order, the most effective, the next most effective, and the least effective parameters for determining slope stability.

가우시안 프로세서 회귀 기반의 비선형 구조방정식을 활용한 고분자 물성거동 예측 연구 (Study of Polymor Properties Prediction Using Nonlinear SEM Based on Gaussian Process Regression)

  • 문경렬;박건욱
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2024
  • 고분자 분야의 개발 및 양산과정에는 제어가 안되는 많은 변수가 있으며, 화학적 조성, 구조, 가공 조건 등 작은 변화에도 물성편차가 크게 발생하기에 보편적인 환경을 가정한 기존의 선형적 모델링 기법으로는 현장 데이터 적용시 많은 오차가 발생한다. 이에 본 연구에서는 최근 산업용 구동부품의 플라스틱 채용경향에 맞추어 엔지니어링 플라스틱인 Polyacetal 수지의 내마모성 및 내굴곡성 강화 연구에 다변량 분석기법인 구조방정식과 가우시안 프로세스 회귀를 결합한 모델링 방식(GPR-SEM)을 제안하고, 비선형성을 가지는 물질 모델링에 활용 가능성을 고찰하고자 한다.

Comparison of machine learning techniques to predict compressive strength of concrete

  • Dutta, Susom;Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.463-470
    • /
    • 2018
  • In the present study, soft computing i.e., machine learning techniques and regression models algorithms have earned much importance for the prediction of the various parameters in different fields of science and engineering. This paper depicts that how regression models can be implemented for the prediction of compressive strength of concrete. Three models are taken into consideration for this; they are Gaussian Process for Regression (GPR), Multi Adaptive Regression Spline (MARS) and Minimax Probability Machine Regression (MPMR). Contents of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and age in days have been taken as inputs and compressive strength as output for GPR, MARS and MPMR models. A comparatively large set of data including 1030 normalized previously published results which were obtained from experiments were utilized. Here, a comparison is made between the results obtained from all the above mentioned models and the model which provides the best fit is established. The experimental results manifest that proposed models are robust for determination of compressive strength of concrete.

가우시안 프로세스 회귀분석을 이용한 지하수 수질자료의 해석 (Applications of Gaussian Process Regression to Groundwater Quality Data)

  • 구민호;박은규;정진아;이헌민;김효건;권미진;김용성;남성우;고준영;최정훈;김덕근;조시범
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.67-79
    • /
    • 2016
  • Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.

실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성 (LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments)

  • 이로운;박정홍;홍성훈
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Model-independent reconstruction of the equation of state of dark energy

  • Hwang, Seung-gyu;L'Huillier, Benjamin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.69.1-69.1
    • /
    • 2020
  • While Dark Energy is one of the explanations for the accelerating expansion of the Universe, its nature remains a mystery. The standard (flat) ΛCDM model is consistent with cosmological observations: type Ia Supernova, BAO, CMB, and so on. However, the analysis of observations assuming a model, model-dependent approach, is likely to bias the results towards the assumed model. In this poster, I will introduce model-independent approach with Gaussian process and the application of Gaussian process regression to reconstruct the equation of state of dark energy.

  • PDF