• Title/Summary/Keyword: gaussian mixture measurement

Search Result 19, Processing Time 0.021 seconds

Gaussian Mixture based K2 Rifle Chamber Pressure Modeling of M193 and K100 Bullets (가우시안 혼합모델 기반 탄종별 K2 소화기의 약실압력 모델링)

  • Kim, Jong-Hwan;Lee, Byounghwak;Kim, Kyoungmin;Shin, Kyuyong;Lee, Wonwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • This paper presents a chamber pressure model development of K2 rifle by applying Gaussian mixture model. In order to materialize a real recoil force of a virtual reality shooting rifle in military combat training, the chamber pressure which is one of major components of the recoil force needs to be investigated and modeled. Over 200,000 data of the chamber pressure were collected by implementing live fire experiments with both K100 and M193 of 5.56 mm bullets. Gaussian mixture method was also applied to create a mathematical model that satisfies nonlinear, asymmetry, and deviations of the chamber pressure which is caused by irregular characteristics of propellant combustion. In addition, Polynomial and Fourier Regression were used for comparison of results, and the sum of squared errors, the coefficient of determination and root-mean-square errors were analyzed for performance measurement.

Target Birth Intensity Estimation Using Measurement-Driven PHD Filter

  • Zhang, Huanqing;Ge, Hongwei;Yang, Jinlong
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.1019-1029
    • /
    • 2016
  • The probability hypothesis density (PHD) filter is an effective means to track multiple targets in that it avoids explicit data associations between the measurements and targets. However, the target birth intensity as a prior is assumed to be known before tracking in a traditional target-tracking algorithm; otherwise, the performance of a conventional PHD filter will decline sharply. Aiming at this problem, a novel target birth intensity scheme and an improved measurement-driven scheme are incorporated into the PHD filter. The target birth intensity estimation scheme, composed of both PHD pre-filter technology and a target velocity extent method, is introduced to recursively estimate the target birth intensity by using the latest measurements at each time step. Second, based on the improved measurement-driven scheme, the measurement set at each time step is divided into the survival target measurement set, birth target measurement set, and clutter set, and meanwhile, the survival and birth target measurement sets are used to update the survival and birth targets, respectively. Lastly, a Gaussian mixture implementation of the PHD filter is presented under a linear Gaussian model assumption. The results of numerical experiments demonstrate that the proposed approach can achieve a better performance in tracking systems with an unknown newborn target intensity.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.

An Analysis of 2D Positional Accuracy of Human Bodies Detection Using the Movement of Mono-UWB Radar

  • Kiasari, Mohammad Ahangar;Na, Seung You;Kim, Jin Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • This paper considers the ability of counting and positioning multi-targets by using a mobile UWB radar device. After a background subtraction process, distinguishing between clutters and human body signals, the position of targets will be computed using weighted Gaussian mixture methods. While computer vision offers many advantages, it has limited performance in poor visibility conditions (e.g., at night, haze, fog or smoke). UWB radar can provide a complementary technology for detecting and tracking humans, particularly in poor visibility or through-wall conditions. As we know, for 2D measurement, one method is the use of at least two receiver antennas. Another method is the use of one mobile radar receiver. This paper tried to investigate the position detection of the stationary human body using the movement of one UWB radar module.

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

Height Estimation of pedestrian based on image (영상기반 보행자 키 추정 방법)

  • Kim, Sung-Min;Song, Jong-Kwan;Yoon, Byung-Woo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1035-1042
    • /
    • 2014
  • Object recognition is one of the key technologies of the monitoring system for the prevention of various intelligent crimes. The height is one of the physical information of a person, and it may be important information for identification of the person. In this paper, a method which can detect pedestrians from CCTV images and estimate the height of the detected objects, is proposed. In this method, GMM (Gaussian Mixture Model) method was used to separate the moving object from the background and the pedestrian was detected using the conditions such as the width-height ratio and the size of the candidate objects. The proposed method was applied to the CCTV video, and the height of the pedestrian at far-distance, middle- distance, near-distance was estimated for the same person, and the accuracy was evaluated. Experimental results showed that the proposed method can estimate the height of the pedestrian as the accuracy of 97% for the short-range, 98% for the medium-range, and more than 97% for the far-range. The image sizes for the same pedestrian are different as the position of him in the image, it is shown that the proposed algorithm can estimate the height of pedestrian for various position effectively.

Research about auto-segmentation via SVM (SVM을 이용한 자동 음소분할에 관한 연구)

  • 권호민;한학용;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2220-2223
    • /
    • 2003
  • In this paper we used Support Vector Machines(SVMs) recently proposed as the loaming method, one of Artificial Neural Network, to divide continuous speech into phonemes, an initial, medial, and final sound, and then, performed continuous speech recognition from it. Decision boundary of phoneme is determined by algorithm with maximum frequency in a short interval. Recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme divided by eye-measurement. From experiment we confirmed that the method, SVMs, we proposed is more effective in an initial sound than Gaussian Mixture Models(GMMs).

  • PDF

Design of New Fine Dust Measurement Method applying LoG Edge Detection Technique (LoG 윤곽선 검출 기법을 적용한 새로운 미세먼지 측정 방법 설계)

  • Jang, Taek-Jin;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.69-73
    • /
    • 2022
  • In this paper, we propose a new method for measuring fine dust through a LoG(Laplacian of Gaussian)-based edge detection technique. CCTV-based images in a video are collected for fine dust measurement, and image ranges are designated through RoI(Region of Interest). After clustering by applying the GMM(Gaussian Mix Model) to the specified area, we detect edge through the LoG algorithm and measure the detected edge strength. The concentration of fine dust is determined based on the measured intensity data of the edge. In this paper, we propose algorithm as the effectiveness of experiment. As a result of collecting and applying CCTV image in the video installed around the laboratory of this school for a month from June to July, the measured result value was proved through this experiment to be sufficient to calculate the concentration and range of fine dust.

Operational performance evaluation of bridges using autoencoder neural network and clustering

  • Huachen Jiang;Liyu Xie;Da Fang;Chunfeng Wan;Shuai Gao;Kang Yang;Youliang Ding;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.189-199
    • /
    • 2024
  • To properly extract the strain components under varying operational conditions is very important in bridge health monitoring. The abnormal sensor readings can be correctly identified and the expected operational performance of the bridge can be better understood if each strain components can be accurately quantified. In this study, strain components under varying load conditions, i.e., temperature variation and live-load variation are evaluated based on field strain measurements collected from a real concrete box-girder bridge. Temperature-induced strain is mainly regarded as the trend variation along with the ambient temperature, thus a smoothing technique based on the wavelet packet decomposition method is proposed to estimate the temperature-induced strain. However, how to effectively extract the vehicle-induced strain is always troublesome because conventional threshold setting-based methods cease to function: if the threshold is set too large, the minor response will be ignored, and if too small, noise will be introduced. Therefore, an autoencoder framework is proposed to evaluate the vehicle-induced strain. After the elimination of temperature and vehicle-induced strain, the left of which, defined as the model error, is used to assess the operational performance of the bridge. As empirical techniques fail to detect the degraded state of the structure, a clustering technique based on Gaussian Mixture Model is employed to identify the damage occurrence and the validity is verified in a simulation study.