• Title/Summary/Keyword: gauge space

Search Result 92, Processing Time 0.022 seconds

Measurement of Thermal Expansion Coefficient of Rock using Strain Gauge (스트레인 게이지를 이용한 암석의 열팽창계수 측정)

  • Park, Chan;Kim, Hyung-Mok;Synn, Joong-Ho;Park, Yeon-Jun;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.475-483
    • /
    • 2007
  • With increasing demand for LNG as energy resources and need for $CO_2$ sequestration as greenhouse gas, more storage facilities are required in Korea. Due to the recent acute safety concerns and land shortage, storage facilities tend to be located underground. In design and construction of underground storage for low and high temperature materials, besides their mechanical characteristics, the thermal characteristics of rock under temperature variation should be understood. In this study, laboratory experiments for the measurement of the thermal expansion coefficient of rock were performed using strain gauge in consideration of the particle size of mineral and experiment temperature range. Experiment results show that thermal expansion coefficient decreased as the temperature decreases. In addition, linear thermal expansion coefficient was developed for typical Korean rocks such as granite. The results of this study can be utilized for the evaluation of thermal propagation in rock mass and the thermo-mechanical stability of underground facilities.

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

A study on the regulation of durability standard of underground structures monitoring sensors (지하구조물 계측센서의 내구연한 기준에 대한 규정 분석 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • The purpose of this study is to research the regulation of durability standard of underground structures monitoring sensors. The durability criteria for construction monitoring sensors of domestic construction companies, the standard years of contents such as buildings on the income tax implementation regulations, and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. The durability criterion on products such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the underground structure, is 8 to 10 years. It is considered that the monitoring sensor installed in the paperboard and the concrete structure at the time of construction will have considerably shortened service life rather than the useful life of the product itself due to various adverse factors such as groundwater influence and compaction.

A Total Spinal Anesthesia Developed during an Induction of an Epidural Block -A case report- (경막외차단 유도중 발생한 전척추마취 -증례보고-)

  • Park, Jung-Goo;Cheun, Jae-Kyu
    • The Korean Journal of Pain
    • /
    • v.8 no.1
    • /
    • pp.156-158
    • /
    • 1995
  • Total spinal anesthesia is a well documented serious life threatening complication which results from an attempted spinal or epidural analgesia. We had an accidental total spinal anesthesia associated with a cranial nerve paralysis and an eventual unconsciousness during epidural analgesia. A 45-year-old female with an uterine myoma was scheduled for a total abdominal hysterectomy under the epidural analgesia. A lumbar tapping for the epidural analgesia was performed in a sitting position at a level between $L_{3-4}$, using a 18 gauge Tuohy needle. Using the "Loss of Resistance" technique to identify the epidural space, the first attempt failed; however, the second attempt with the same level and the technique was successful. The epidural space was identified erroneously. However, fluid was dripping very slowly through the needle, which we thought was the fluid from the normal saline which was injected from the outside to identify the space. Then 20 ml of 2% lidocaine was administered into the epidural space. Shortly after the spinal injection of lidocaine, many signs of total spinal anesthesia could be clearly observed, accompanied by the following progressing signs of intracrainal nerve paralysis: phrenic nerve, vagus nerve, glossopharyngeal nerve and trigeminal nerve in that order. Then female was intubated and her respiration was controlled without delay. The scheduled operation was carried out uneventfully for 2 hours and 20 minutes. The patient recovered gradually in th4e reverse order four hours from that time.

  • PDF

Improving Speed of Coil Guns (코일건의 속도향상에 관한 연구)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • Coil guns are known worldwide as inexpensive space launch vehicles. The principle of Fleming's right-hand rule allows the coil gun to accelerate the projectile by applying enormous voltage to the solenoid coil. This study was performed to improve the speed of the coil gun using MATLAB, a commercially available numerical program for high launching force of electromagnetic projectiles. To maximize the speed of the projectile, the largest coil of American wire gauge was used, and the number of windings in the radial and axial directions of the solenoid coil was optimized. Optimal length of the projectile was obtained by calculating the optimal aspect ratio between the axial length of the solenoid coil and the length of the projectile.

Method of Micro-thrust Measurement in Vacuum chamber for Space Applications (우주환경모사 진공실험 시설에서의 미소추력 측정방법)

  • Jung, Sung-Chul;Shin, Kang-Chang;Lee, Min-Jae;Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.67-70
    • /
    • 2006
  • In this study micro-thrust measurement method in high vacuum chamber is introduced. This is important for the development of micro-thruster for micro-satellite applications. At Chungnam national University, high-vacuum experimental facility has been constructed to simulate space environment. And strain gauge besed micro-thrust measurement in vacuum chamber has been studied and discussed.

  • PDF

Wind Tunnel Test of MRP Model using External Balance

  • Chung, Jindeog;Sung, Bongzoo;Cho, Taehwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • A comparative wind tunnel testing of an airplane model was performed at the Korea Aerospace Research Institute Low Speed Wind tunnel(KARI LSWT). The model used for the comparative test was a seaplane model from the Glenn L. Martin Wind(GLM) Tunnel of University of Maryland, U.S.A. The 6-component external balance used in force and moment measurement is pyramidal type, which is a precision device that has strain gauge-type load cell inside of balance and the virtual center of the balance coincides with the tunnel centerline. Image method is adopted to eliminate the tare and interference of the model support, and to correct the flow angularity to the model also. Test results from KARI LSWT were compared with the results from GLM tunnel.

  • PDF

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.