• Title/Summary/Keyword: gauge density

Search Result 84, Processing Time 0.034 seconds

Irregularity Analysis of Maglev Test Track (자기부상열차 시험노선의 궤도틀림 분석)

  • Kim, Saang-Bum;Kang, Kee-Dong;Han, Hyung-Suk;Lee, Jong-Min
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2400-2404
    • /
    • 2011
  • Power spectral density (PSD) model of irregularities for the maglev test track is presented. Track irregularities (gauge, cant, twist and vertical) were calculated from the survey data of sleepers on the test track. PSD model was constructed from the estimated PSDs of each track irregularities. Versine (gauge, cant, twist, vertical and lateral) of the track is obtained and their PSDs were estimated, too. Presented PSD model can be used for the analysis of levitation stability and ride quality of the maglev system.

  • PDF

Evaluation of Field Compaction Density by Non-nuclear Density Gauge (다짐밀도 측정장비(Non-nuclear Type)를 사용한 현장 다짐밀도 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Yang, Sung Lin;Kim, Ki Hyun;Hwang, Sung Do;Jeong, Kyu Dong
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • PURPOSES : The objective of this study is to compare the densities of asphalt pavements measured both in the field and in the laboratory, and also to evaluate the applicability of field density measuring equipment, such as the pavement quality indicator (PQI), by using statistical analysis. METHODS : For the statistical analysis of the density measured from asphalt pavement, student t-tests and a coefficient of correlation are investigated. In order to compare the measured densities, two test sections are prepared, with a base layer and an intermediate layer constructed. Each test section consists of 9 smaller sections. During construction, the field densities are measured for both layers (base and intermediate) in each section. Core samples are extracted from similar regions in each section, and moved to the laboratory for density measurements. All the measured densities from both the field and laboratory observations are analyzed using the selected statistical analysis methods. RESULTS AND CONCLUSION : Based on an analysis of measured densities, analysis using a correlation coefficient is found to be more accurate than analysis using a student t-test. The correlation coefficient (R) between the field density and the core density is found to be very low with a confidence interval less than 0.5. This may be the result of inappropriate calibration of the measuring equipment. Additionally, the correlation coefficient for the base layer is higher than for the intermediate layer. Finally, we observe that prior to using the density measuring equipment in the field, a calibration process should be performed to ensure the reliability of measured field densities.

Deduction of Data Quality Control Strategy for High Density Rain Gauge Network in Seoul Area (서울시 고밀도 지상강우자료 품질관리방안 도출)

  • Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.245-255
    • /
    • 2015
  • This study used high density network of integrated meteorological sensor, which are operated by SK Planet, with KMA weather stations to estimate the quantitative precipitation field in Seoul area. We introduced SK Planet network and analyzed quality of the observed data for 3 months data from 1 July to 30 September 2013. As the quality analysis result, we checked most SK Planet stations observed similar with previous KMA stations. We developed the real-time quality check and adjustment method to reduce the error effect for hydrological application by missing and outlier value and we confirmed the developed method can be corrected the missing and outlier value. Through this method, we used the 190 stations(KMA 34 stations, SK Planet 156 stations) that missing ratio is less than 20% and the effect of the outlier was the smallest for quantitative precipitation estimation. Moreover, we evaluated reproducibility of rainfall field high density rain gauge network has $3km^2$/gauge. As the result, the spatial relative frequency of rainfall field using SK Planet and KMA stations is similar with radar rainfall field. And, it supplement the blank of KMA observation network. Especially, through this research we will take advantage of the density of the network to estimate rainfall field which can be considered as a very good approximation of the true value.

Optimization of Stream Gauge Network Using the Entropy Theory (엔트로피 이론을 이용한 수위관측망의 최적화)

  • Yoo, Chul-Sang;Kim, In-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.161-172
    • /
    • 2003
  • This study has evaluated the stream gauge network with the main emphasis on if the current stream gauge network can catch the runoff characteristics of the basin. As the evaluation of the stream gauge network in this study does not consider a special purpose of a stream gauge, nor the effect from a hydraulic structure, it becomes an optimization of current stream gauge network under the condition that each stream gauge measures the natural runoff volume. This study has been applied to the Nam-Han River Basin for the optimization of total 31 stream gauge stations using the entropy concept. Summarizing the results are as follows. (1) The unit hydrograph representing the basin response from rainfall can be transferred into a probability density function for the application of the entropy concept to optimize the stream gauge network. (2) Accurate derivation of unit hydrographs representing stream gauge sites was found the most important part for the evaluation of stream gauge network, which was assured in this research by comparing the measured and derived unit hydrographs. (3) The Nam-Han River Basin was found to need at least 28 stream gauge stations, which was derived by considering both the shape of the unit hydrograph and the runoff volume. If considering only the shape of the unit hydrograph, the number of stream gauges required decreases to 23.

Computation of Areal Reduction Factor and Its Regional Variability (면적우량환산계수의 산정과 그 지역적 변화)

  • Kim, Won;Yoon, Kang-Hoon
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.79-86
    • /
    • 1992
  • ARF(Areal Reduction Factor) have been developed and used to convert point I-D-F to areal I-D-F in many countries. In Korea, through ARF was calculated in Han river basin by several researchers, it has limit to apply to other regions \ulcorner 새 low density of rainfall gauge station and shortage of data. In this study ARF has developed in areas of high density of rainfall gauge station, Pyungchang river(han river), Wi stream(nakdong river), and Bochung stream(Guem river) basin by fixed-area method. And coefficient of variation of annual mean precipitation was presented to use ARF in othere areas and its applicability was analyzed.

  • PDF

A Study on Adapting Patterns to Stable Knit Fabrics in Relation to Drapability

  • Song, Mi-Ryong;Yang, Soo-Yung
    • The International Journal of Costume Culture
    • /
    • v.2 no.2
    • /
    • pp.80-96
    • /
    • 1999
  • This research focused on pattern adjustments of the stable knit garment for women. Fourteen different types of the knitted fabrics by 12 gauge, computerized flat bed machines were cut in as one half of the torso front, one half of the torso back, and one side of the sleeves for each of them. Guidelines such as the center front, the center back, the armhole, the bust-line, the waistline, the hip-line the hemline were basted on the torso patterns in the knitted fabrics. Also the grain-line, the elbow-line, and the hemline were basted on the one side of the sleeves in the same as above knitted fabrics. The torso patterns in the knitted fabrics were exhibited on the dress-forms on top of the torso patterns in Muslin, which also have the same guidelines drawn on. The distances between the guidelines on Muslin and those on the knitted fabrics for each set of the sample fabrics were measured every three days for two weeks. The fabric properties of the fourteen knitted fabrics such as fiber contents, stitch density both in the wale and course directions, weight, thickness, stretch & recovery, residual shrinkage, relaxation and drapability were laboratory tested for how these were related to finished appearance of 12 gauge, computerized flat knit garments and also in order to prove the fourteen knitted fabrics fall to a category of such as the stable knit. The results from the investigation revealed that six fabric properties such as stitch density, thickness, stretch recovery, residual shrinkage and relaxation were not so much significant factors as weight and drapability. In conclusion, fabric weight, and drapability of the fabric resulting from fiber contents were the cause of final appearance distortion of garment. When adapting patterns for stabilized, 12 gauge, computerized flat knitted fabrics, the fiber contents of the fabrics should be taken into consideration to reduce the production cost and produce better-fit garments.

  • PDF

Evaluation of Ground Compaction Using SASW Testing (SASW 시험을 활용한 지반 현장 다짐도 평가)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Compaction is performed in civil engineering sites to secure the stability of the ground and prevent settlement. While the process of compaction is crucial, it is also essential to evaluate the degree of compaction after the completion of the process. In domestic sites, the evaluation of compaction is mainly conducted on a small number of spot using point-based tests such as plate load tests and sand cone tests. The methods presented so far allow assessment of surface compaction, but evaluating compaction in deeper layers poses challenges. Moreover, due to the limited coverage of point-based testing, it is difficult to achieve an overall assessment of compaction. As a solution to these issues, the Spectral-Analysis-of-Surface-Waves (SASW) tests were utilized to evaluate compaction. SASW tests offer a broader measurement range compared to point-based tests, and depending on the test setup, this method can provide the stiffness of the ground at greater depths. In this study, SASW tests were conducted in a compacted soil site under different conditions to assess compaction. Additionally, Nuclear Density Gauge tests were conducted concurrently to compare and verify the results of SASW. The research results confirmed the feasibility of evaluating compaction using SASW at the geotechnical site.

Measurement of Magnetostriction Characteristics of Electrical Steel Sheet using Three-axial Strain Gauge and Vector Single Sheet Tester (3축 Strain Gauge와 Vector Single Sheet Tester를 이용한 전기강판의 자왜 특성 측정)

  • Park, Chan-Hyuk;Cho, Hyun-Jin;Yoon, Hee-Sung;Ha, Jung-Woo;Kim, Joong-Kyoung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1039-1045
    • /
    • 2014
  • Acoustic noise from a transformer, recently, has drawing more and more attentions. One of the main source of the noise is thought to be magnetostriction of the electrical steel sheets which compose transformer core. This paper deals with the magnetostriction of a highly grain-oriented electrical steel sheet measured by using a vector single sheet tester and a three-axial strain gauge. The results show that direction and axis ratio as well as the magnitude of the applied magnetic flux density contribute much to magnetostriction.

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF