• Title/Summary/Keyword: gate bottom geometry

Search Result 3, Processing Time 0.023 seconds

An Analytical Model for Deriving The Threshold Voltage Expression of A Short-gate Length SOI MESFET (Short-gate SOI MESFET의 문턱 전압 표현 식 도출을 위한 해석적 모델)

  • Kal, Jin-Ha;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, a simple analytical model for deriving the threshold voltage of a short-gate SOI MESFET is suggested. Using the iteration method, the Poisson equation in the fully depleted silicon channel and the Laplace equation in the buried oxide region are solved two-dimensionally, Obtained potential distributions in each region are expressed in terms of fifth-order of $\chi$, where $\chi$ denotes the coordinate perpendicular to the silicon channel direction. From them, the bottom channel potential is used to describe the threshold voltage in a closed-form. Simulation results show the dependencies of the threshold voltage on the various device geometry parameters and applied bias voltages.

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

Impacts on Water Quality to an Artificial Lake Due to Sudden Disturbance of Sediments (급격한 저니토 교란이 인공 하구호 수질에 미치는 영향)

  • 서승원;김정훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-50
    • /
    • 2003
  • This study aims to figure out water quality impacts due to sudden disturbances of sediments during dike construction in land reclamation for the northern part of the Siwhaho Lake where heavily deteriorated settlements from upstream loadings are outstanding. We exploit a 3-D water quality model CE-QUAL-ICM combined with a hydrodynamic model TIDE3D. Simulations are done accounting water-sediment interaction in a 4-$\sigma$ layers. Long-term simulation for 1-year shows that bottom layers around the disturbance location are only affected and marks very high concentration. Complete vertical mixing appears at least 5km apart to downward due to complex effects of geometry, bathymetry and river inflows. It should be addressed that existing condition of the Siwhaho Lake stands for high concentration of COD and TP in winter and spring due to relatively high incoming loadings, however the effect of sediment disturbances yields reverse phenomena, i.e., impacts of dike construction arise greatly in summer and fall. Refined grid system consisting of 150m${\times}$150m rectangular grid, which is doubled system compared to previous study (Suh et al.,2002), gives affordable results by reducing flux differences through a cell especially in front of gate.