• Title/Summary/Keyword: gasoline service station attendants

Search Result 4, Processing Time 0.034 seconds

Exposure to Benzene Associated with Gasoline and Environmental Tobacco Smoke (휘발유 및 환경 담배 연기 관련 벤젠 노출)

  • 조완근;문경조
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.319-323
    • /
    • 1999
  • This study was designed to evaluate the exposure to benzene by residents in neighborhoods near a major roadways, by persons waiting buses, and by drivers and service station attendants while refueling. It was confirmed that the outdoor air benzene concentrations near the major roadways were higher than those further away from the sources. However, neither the indoor air nor breath concentrations were different for two specified residential areas. Smoking was confirmed as an important factor for the indoor air benzene levels. Persons waiting buses, drivers and service station attendants were exposed to elevated benzene levels compared to even the residents in neighborhoods near a major roadways. The mean benzene concentration at bus stop was 2.7 to 6.9 times higher than the mean ambient air concentration. The mean benzene concentrations in the breathing zone of drivers and service station attendants were 95 to 160 and 120 to 202 times higher than the mean ambient air concentrations, respectively.

  • PDF

Microenvironmental Exposures To Volatile Organic Compounds (미규모 환경에서의 휘발성 유기화합물 노출)

  • Jo, Wan-Kuen;Gang, Kwi-Wha;Woo, Hyung-Taek;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.61-61
    • /
    • 1995
  • Volatile organic compounds(VOCs) are of concern for their potential chronic toxicity, their suspected role in the formation of smog, and their suspected role in destruction of stratospheric ozone. Present study evaluated the exposures to selected VOCs in three microenvironments: 2 chlorinated and 5 aromatic VOCs in the indoor and outdoor air, and 5 aromatic VOCs in the breathing zone air of gas-service station attendants. With permissible Quality Assurance and Quality Control performances VOC concentrations were measured 1) to be higher in indoor air than in outdoor air, 2) to be higher in two Taegu residential areas than in a residential area of Hayang, and 3) to be higher in the nighttime than in the daytime. Among five aromatics, Benzene and Toluene were two most highly measured VOCs in breathing zone air of service station attendants. Based on the sum of VOC concentrations, the VOC exposure during refueling was estimated to be about 10% of indoor and outdoor exposures. For Benzene only, the exposure during refueling was estimated to cause about 52% of indoor and outdoor exposure. The time used to calculate the exposures was 2 minutes for refueling and 24 hours for indoor and outdoor exposures.

Microenvironmental Exposures To Volatile Organic Compounds (미규모 환경에서의 휘발성 유기화합물 노출)

  • 조완근;강귀화
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.447-459
    • /
    • 1995
  • Volatile organic compounds(VOCs) are of concern for their potential chronic toxicity, their suspected role in the formation of smog, and their suspected role in destruction of stratospheric ozone. Present study evaluated the exposures to selected VOCs in three microenvironments: 2 chlorinated and 5 aromatic VOCs in the indoor and outdoor air, and 5 aromatic VOCs in the breathing zone air of gas-service station attendants. With permissible Quality Assurance and Quality Control performances VOC concentrations were measured 1) to be higher in indoor air than in outdoor air, 2) to be higher in two Taegu residential areas than in a residential area of Hayang, and 3) to be higher in the nighttime than in the daytime. Among five aromatics, Benzene and Toluene were two most highly measured VOCs in breathing zone air of service station attendants. Based on the sum of VOC concentrations, the VOC exposure during refueling was estimated to be about 10% of indoor and outdoor exposures. For Benzene only, the exposure during refueling was estimated to cause about 52% of indoor and outdoor exposure. The time used to calculate the exposures was 2 minutes for refueling and 24 hours for indoor and outdoor exposures.

  • PDF

A Study on Exposure to Volatile Organic Compounds at Gas Stations in Korea (국내 일부 주유소 내에서의 휘발성 유기화합물 노출에 관한 연구)

  • Song, Sang Hwan;Paik, Nam Won;Ha, Kwon Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.58-73
    • /
    • 2000
  • Objectives : This study was performed to evaluate BTEX exposure to gas station service attendants and the critical affect of benzene and MtBE airborne concentration. Methods : the degree of exposure to airborne BTEX and MtBE was examined in the service attendants at seven gas stations across the country during a summer season. The TWAs(time-weighted averages) of atmospheric concentration of substances in personal and area samples, were calculated. The component ratio of BTEX and MtBE in the samples of bulk gasoline from each station studied was also measured. Results : The airborne concentrations of BTEX and MtBE showed a lognormal distribution and The TWA concentrations of benzene in personal samples from each station were 0.089 ppm - 0.18 ppm, and those of toluene were 0.097 ppm - 0.2 ppm. The average TWA concentrations of xylene and ethyl benzene was 0.03 ppm and 0.001 ppm, respectively. The TWA concentrations of MtBE were 0.4 ppm - 1.3 ppm. The volume concentrations of MtBE, toluene, ethyl benzene and xylene in the bulk gasoline samples were 3 - 7.4 %, 3 - 12 %, 0.64 % and 1.5 - 10 %, respectively. Conclusions : The benzene concentration was detected to exceed the ACGIH threshold benzene level of 0.5 ppm, in one of 74 personal and area samples. MtBE, a substitute for aromatic compounds such as benzene in gasoline, was found to bring about a greater chance of exposure to carcinogen, due to its high vapor pressure and carcinogenicity.

  • PDF