• Title/Summary/Keyword: gas transfer

Search Result 1,717, Processing Time 0.029 seconds

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.

Heat Transfer Characteristics of Carbon Dioxide in a Inclined Helical Coil Type Heat Exchanger with Inner Diameter Tube of 4.55 mm (내경 4.55 mm의 경사진 헬리컬 코일형 열교환기내 이산화탄소의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube, which is specified as the inner diameter of 4.55 mm. The refrigerant mass fluxes were varied from 200 to $600kg/m^2s$ and the inlet pressures of gas cooler were done 7.5 to 10.0 (MPa). The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increase with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows relatively good coincidence with those predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ is well coincident with the correlation by Pitla et al. However, at the region near pseudo-critical temperature, the experiments indicate higher values than the Pitla et al. correlation.

  • PDF

Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding (알루미늄의 펄스 전류 미그 용접)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

Heat Transfer Correlation during Gas-Cooling Process of Carbon Dioxide in a Horizontal Tube

  • Kang Byung-Ha;Choi Yi-Cheol;Kim Suk-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2006
  • The characteristics of heat transfer and pressure drop have been investigated experimentally during gas-cooling process of carbon dioxide. The results of this study are useful information in the design of a heat exchanger of $CO_2$ refrigerator. The test section consists of 6 series of copper tube, 4.15 and 2.18mm ID, respectively. The inlet temperature, the operating pressure, and the mass flux are varied in the range of $80{\sim}120^{\circ}C,\;{7\sim}10MPa,\;and\;400{\sim}1,900kg/m^2s$, respectively. The heat transfer coefficient of $CO_2$ is affected by temperature, inlet pressure, and mass flux of $CO_2$. At the maximum HTC, the temperature of $CO_2$ nearly accords with the psuedocritical temperature. It is found that the pressure drop is substantially affected by mass flux and inlet pressure of $CO_2$ . The results have been compared with those of previous work. The heat transfer correlation at the gas-cooling process has been also suggested which predicts within the error of 20%.

Experimental and Numerical Analysis of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량 유량계 센서관에서의 열전달 현상에 대한 수치적 해석 및 실험적 연구)

  • Jang, Seok-Pil;Kim, Sung-Jin;Choi, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.154-161
    • /
    • 2000
  • As a mass flow controller is widely used in many manufacturing processes for controlling a mass flow rate of gas with accuracy of 1%, several investigators have tried to describe the heat transfer phenomena in a sensor tube of an MFC. They suggested a few analytic solutions and numerical models based on simple assumptions, which are physically unrealistic. In the present work, the heat transfer phenomena in the sensor tube of the MFC are studied by using both experimental and numerical methods. The numerical model is introduced to estimate the temperature profile in the sensor tube as well as in the gas stream. In the numerical model, the conjugate heat transfer problem comprising the tube wall and the gas stream is analyzed to fully understand the heat transfer interaction between the sensor tube and the fluid stream using a single domain approach. This numerical model is further verified by experimental investigation. In order to describe the transport of heat energy in both the flow region and the sensor tube, the Nusselt number at the interface between the tube wall and the gas stream as well as heatlines is presented from the numerical solution.

  • PDF

Modeling of Ammonia Mass Transfer Using a Hollow Fiber Membrane Contactor (중공사막 접촉기를 이용한 암모니아 물질전달 모델링)

  • Oh, Dae-Yang;Jeong, Joo-Young;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2011
  • Ammonia in water which is toxic to human, its concentration is regulated below 0.5 mg/L in drinking water. Current study aimed to develop appropriate models for ammonia stripping using hollow fiber membrane contactor. Two different models were developed during the study. Model 1 was assumed only free ammonia ($NH_3$) transfer in stripping process, whereas the Model 2 was assumed with total ammonia ($NH_3+{NH_4}^+$) transfer. Ammonium chloride ($NH_4CI$), sodium hydroxide(NaOH) were used to make ammonia solution, which was concentration of 25 mg as N/L at a pH of 10.5. The experimental conditions were such that, the liquid flow was in tube-side in upward direction and t he gas flow was on shell-side in downward direction a t room temperature. The experimental and modeling results showed that marginal difference were observed at low gas flux. However the difference between the both models and experimental value were increased when the gas flux was increased. The study concludes that the Model 1 with free ammonia is more appropriate when both models were compared and useful in ammonia stripping process at low gas flux.

Study on the Gas-Liquid Mixing Characteristics in Reactor System Using Ejector

  • Jin, Zhen-Hua;Utomo, Tony;Chung, Han-Shik;Jeong, Hyo-Min;Shin, You-Sik;Lee, Sang-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2708-2713
    • /
    • 2007
  • The aim of this paper is further studies to achieve deeper understanding in this field. First investigate the influence of operating conditions and design parameters on the hydrodynamics and the mass transfer properties of a loop reactor. This paper provides a literature review on the ejectors applications in the mixing system. A number of studies are grouped and discussed in several topics such as the background, theory of ejector, mixing characteristics, optimization of the system. Since the high efficiencies reactor using ejector widely used in gas-liquid system, especially in a number of chemical and biochemical processes. This is due to their high efficiency in gas dispersion resulting in high mass transfer rate and low power requirements. Thus ejector has been applied to the mixing system. An investigation on hydrodynamics and mass transfer characteristics of gas-liquid ejector has been carried out using three-dimensional CFD modeling.

  • PDF

Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성)

  • Yu, Tae-Geun;Kim, Dae-Hui;Roh, Geon-Sang;Ku, Hak-Geun;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.