• 제목/요약/키워드: gas sensing

검색결과 788건 처리시간 0.026초

고농도 $NO_x$ 감지용 $In_2O_3$ 후막가스센서의 Al, Ru 및 $SnO_2$ 첨가에 의한 특성 향상 (Gas Sensing Characteristics of Catalyst-added $In_2O_3$ Thick Film for Detecting $NO_x$ of High Concentration)

  • 박종현;김동현;이종영;김광호
    • 한국세라믹학회지
    • /
    • 제36권12호
    • /
    • pp.1322-1326
    • /
    • 1999
  • In2O3 thick film gas sensor for detecting NOx gas of high concentration was fabricated by a screen printing technique. This work focussed on investigation of the change of sensitivity to NOx gas with firing temperatures of sensing layer and on improvement of the sensitivity by adding catalysts such as Al,. Ru, and SnO2 The cross sensitivites of sensor to CO, H2, CH4 and i-C4H10 gases were also examined under NO2 gas concentration of 200ppm Pure In2O3 gas sensor prepared at a firing temperature of 50$0^{\circ}C$ showed a maximum sensitivity to NOx gas at the operating temperature of 40$0^{\circ}C$ Al(0.004 wt%)-In2O3 sensor largely improved the sensitivities to both NO2 and NO gas and showed a superior selectivity compared with other gas sensors.

  • PDF

이종접합 가스센서의 가스감지기구 (Gas Sensing Mechanism of CuO/ZnO Heterojunction Gas Sensor)

  • 이승환;추교섭;박정호;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1114-1116
    • /
    • 1995
  • P/N(CuO/ZnO) Heterojunction gas sensors were made by 2-step sintering methods and its gas sensing property was measured by varying the injected gases and the operating temperatures. As the applied voltage was increased in air ambients, the current-voltage characteristics shown the ohmic properties. However, when the CO gas ambients, 500 ppm at $200^{\circ}C$, the current-voltage characteristics behaves like a rectifying diode s after 3 mins later and its conduction mechanism is discussed qualitatively for the first times.

  • PDF

CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작 (Fabrication of low power NO micro gas senor by using CMOS compatible process)

  • 신한재;송갑득;이홍진;홍영호;이덕동
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

$MgO-Cr_2O_3-TiO_2$ 산화물의 가스감지 특성 (Gas Sensing Properties of $MgO-Cr_2O_3-TiO_2$ Oxide)

  • 양천회;홍필선;유일증;임병오
    • 한국안전학회지
    • /
    • 제1권1호
    • /
    • pp.21-26
    • /
    • 1986
  • Gas sensing materials for detecting inflammable gas such as alcohol, propane, acetic acid, carbon monoxide, hydrogen were developed by utiliting $MgO-Cr_2O_3-TiO_2$ system. Between 30$0^{\circ}C$ and 50$0^{\circ}C$, reversible chemisorption becomes dominant and the electrical canduction of P-type semiconductive with the gas chemisorption. The ceramic sensor exhibits a high sensitivity to particular reducing gas such as alcohol, whereas propane and butane have little effect on the resistivity. The time response of adsorption is estimated to be about 20 sec. On the other hand, the desorption process, which corresponds to oxidation due to oxygen adsorption, take more than 60 sec. Thus the ceramic sensor can be used as a alcohol sensor in an ambient aunosphere. As the oxygen concentration is increased from 0.1 to 10 precent($10^3-10^6ppm$), the resistance decreases rapidly but stabilizes at higher concentration.

  • PDF

H2S Gas Sensing Properties of CuO Nanotubes

  • Kang, Wooseung;Park, Sunghoon
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.392-397
    • /
    • 2014
  • CuO nanotubes are synthesized using $TeO_2$ nanorod templates for application to $H_2S$ gas sensors. $TeO_2$ nanorod templates were synthesized by using the VS method through thermal evaporation. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction showed that the synthesized nanotubes were monoclinic-structured polycrystalline CuO with diameter and wall thickness of approximately 100~300 nm and 5~10 nm, respectively. The CuO nanotube sensor showed responses of 136~325% for the $H_2S$ concentration of 0.1~5 ppm at room temperature. These response values are approximately twice as high as that of the CuO nanowire sensor for the same concentrations of $H_2S$ gas. Along with the investigation of the performance of the sensors, the mechanisms of $H_2S$ gas sensing of the CuO nanotubes are also discussed in this study.

$\alpha$-Fe$_2$O$_3$의 가스감지특성에 미치는 황산이온의 영향 (Effects of Sulfate Ion the Gas Sensing Characteristic of the $\alpha$-Fe$_2$O$_3$)

  • 양천희
    • 한국안전학회지
    • /
    • 제4권1호
    • /
    • pp.71-74
    • /
    • 1989
  • The $\alpha$-Fe$_2$O$_3$ gas sensor, prepared by the precipitation of Fe(OH)$_3$ from a solution of iron(III) sulfate and tin (IV) chloride, was composed of fine particles and was superior in sensitivity to other $\alpha$-Fe$_2$O$_3$. The gas sensitivity was found to depend on the amounts of remaining sulfate ion the microstructure and a small amount of iron(II) species generated through the reduction of $\alpha$-Fe$_2$O$_3$. The sensing mechanism of $\alpha$-Fe$_2$O$_3$gas sensor was confirmed to be due to the reduction of $\alpha$-Fe$_2$O$_3$ to the low resistive Fe$_3$-xO$_4$ by combustible gas and to depend on the crystral structure.

  • PDF

결정성장 억제재를 첨가한 SnO$_{2}$ 미세입자의 메탄가스 감지효과 (Methane gas sensing effect of SnO$_{2}$ fine particle mixed with inhibitor to crystal growth)

  • 홍영호;강봉휘;이덕동
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.38-43
    • /
    • 1996
  • A coprecipitation method was used for preparing Ca and Pt doped $SnO_2$ fine powder. Components of the powder were investigated by XPS and SIMS. Crystallite size and specific surface area were investigated by TEM, XRD, and BET analysis. $SnO_2$(Ca)/Pt based thick film devices were prepared by a screen printing technique for methane gas detection. Then sensing characteristics of the devices were investigated. As Ca and Pt added, the crystal growth of $SnO_2$ was suppressed during calcining and sintering, and the sensitivity of $SnO_2$(Ca)/Pt thick film to methane gas was enhanced. For the Pt doped $SnO_2$ fine particle, the thick film device shows sensitivity of about 83% to 2000 ppm methane gas at an operating temperature of >$400^{\circ}C$.

  • PDF

박막형 $WO_{3}$계 가스센서의 NOx 감도 특성 (NOx Sensing Characteristics of the $WO_{3}$-Based Thin-Film Gas Sensors)

  • 유광수
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.39-46
    • /
    • 1996
  • $WO_{3}$에 미량의 Pd 또는 Pt가 첨가된 박막을 이용한 NOx 센서를 제조하였다. $WO_{3}$계 박막은 고진공, 저항가연식 evaporator를 이용하여 분위기온도에서 증착한 다음 $500^{\circ}C$에서 열처리하였다. 5 ppm의 $NO_{2}$가스에 대하여 $200^{\circ}C$에서 측정한 가스감도($R_{gas}/R_{air}$)는 0.5 wt.% $Pt-WO_{3}$ 센서에서 50으로서 최대값을 가졌다.

  • PDF

A Comparative Study of Gas Sensing Properties of Au-loaded ZnO and Au@ZnO Core-shell Nanoparticles

  • Majhi, Sanjit Manohar;Dao, Dung Van;Lee, Hu-Jun;Yu, Yeon Tae
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.76-81
    • /
    • 2018
  • Au@ZnO core-shell nanoparticles (NPs) were prepared by a simple method followed by heat-treatment for gas sensor applications. The advantage of the core-shell morphology was investigated by comparing the gas sensing performances of Au@ZnO core-shell NPs with pure ZnO NPs and different wt% of Au-loaded ZnO NPs. The crystal structures, shapes, sizes, and morphologies of all sensing materials were characterized by XRD, TEM, and HAADF-STEM. Au@ZnO core-shell NPs were nearly spherical in shape and Au NPs were encapsulated in the center with a 40-45 nm ZnO shell outside. The gas sensing operating temperature for Au@ZnO core-shell NPs was $300^{\circ}C$, whereas it was $350^{\circ}C$ for pure ZnO NPs and Au-loaded ZnO NPs. The maximum response of Au@ZnO core-shell NPs to 1000 ppm CO at $300^{\circ}C$ was 77.3, which was three-fold higher than that of 2 wt% Au-loaded ZnO NPs. Electronic and chemical effects were the primary reasons for the improved sensitivity of Au@ZnO core-shell NPs. It was confirmed that Au@ZnO core-shell NPs had better sensitivity and stability than Au-loaded ZnO NPs.

산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성 (NO Gas Sensing Properties of ZnO-SWCNT Composites)

  • 장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.