• Title/Summary/Keyword: gas selectivity

Search Result 670, Processing Time 0.024 seconds

Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores (중간기공을 갖는 미세다공성 탄소 분리막의 기체 투과 특성)

  • Shin, Jae Eun;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.221-232
    • /
    • 2018
  • The silica containing carbon ($C-SiO_2$) membranes were fabricated using poly(imide siloxane)(Si-PI) and polyvinylpyrrolidone (PVP) blended polymer. The characteristics of porous carbon structures prepared by the pyrolysis of polymer blends were related with the micro-phase separation behaviors of the two polymers. The glass transition temperatures ($T_g$) of the mixed polymer blends of Si-PI and PVP were observed with a single $T_g$ using differential scanning calorimetry. Furthermore, the nitrogen adsorption isotherms of the $C-SiO_2$ membranes were investigated to define the characteristics of porous carbon structures. The $C-SiO_2$ membranes derived from Si-PI/PVP showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures. For the molecular sieving probe, the $C-SiO_2$ membranes were prepared with the ratio of Si-PI/PVP and the pyrolysis conditions, such as the pyrolysis temperature and the isothermal times. Consequently, the $C-SiO_2$ membranes prepared by the pyrolysis of Si-PI/PVP at $550^{\circ}C$ with the isothermal time of 120 min showed the $O_2$ permeability of 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$) and $O_2/N_2$ selectivity of 14.

Fabrication and characteristics of alcohol sensor using Fe2O3 (Fe2O3후막을 이용한 alcohol sensor 제작 및 감응특성)

  • Lee, Y.S.;Song, K.D.;Lee, S.M.;Shim, C.H.;Choi, N.J.;Joo, B.S.;Lee, D.D.;Huh, J.S.
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • In order to get low cost and portability, semiconductor gas sensor need to have low operating temperature and high sensitivity. $Fe_2O_3$ based sensors which were doped with metal oxide catalysts($MoO_3$, $V_2O_5$, $TiO_2$, and CdO) were fabricated by screen printing method. To improve electrical stability of sensors, the $Fe_2O_3$ sensors were annealed in $N_2$ at $700^{\circ}C$ for 2 hours. The $V_2O_5$ doped $Fe_2O_3$ sensor showed about $80{\sim}90%$ sensitivity at alcohol 1,000 ppm and have good selectivity to hydrocarbon gas and tobacco odors. The fabricated sensor and PIC-chip were employed for portable alarm system.

Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications (수소 분리 응용을 위한 폴리벤즈이미다졸 기반 분리막의 연구 동향)

  • Kim, Ji Hyeon;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.453-466
    • /
    • 2020
  • As the demand for eco-friendly energy increases to overcome the energy shortage and environmental pollution crisis, hydrogen economy has been proposed as a potential solution. Accordingly, an economical and efficient hydrogen production is considered to be an essential industrial process. Research on applying hydrogen separation membranes for H2/CO2 separation to the production of highly concentrated hydrogen by purifying H2 and capturing CO2 simultaneously from synthetic gas produced by gasification is in progress nowadays. In high temperature environments, the membrane separation process using glassy polymeric membrane with H2 selectivity has the potential for CO2 capture performance, and is an energy and cost effective system since polybenzimicazole (PBI)-based separators show excellent chemical and mechanical stability under high-temperature operation conditions. Thus, the development of high-performance PBI hydrogen separators has been rapidly progressing in recent years. This overview focuses on the recent developments of PBI-based membranes including structure modified, cross-linked, blended and carbonized membranes for applications to the industrial hydrogen separation process.

Hydrogenolysis of CFC-113a$(CF_3CCl_3)$ Catalyzed by Heterogeneous Catalysts in the Liquid Phase (불균일 촉매를 이용한 CFC-113a$(CF_3CCl_3)$의 액상 가수소 분해 반응)

  • Jo, Uk Jae;Lee, Ik Mo;Kim, Hong Gon;Kim, Hun Sik
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.695-700
    • /
    • 1994
  • Hydrogenolysis reactions of CFC-113a catalyzed by various heterogeneous catalysts $(Rh/Al_2O_3,\;Pd/C,\;Ni,\;Al_2O_3,\;Active\;carbon)$ were investigated in the liquid and gas phases. In the liquid phase reaction, different catalysts showed different activities, but all catalysts used gave high selectivities toward HCFC-123 over 95%. It was noticeable that the neutral $Al_2O_3$ showed both a high activity and a selectivity in the liquid phase reaction. In the gas phase reaction, transition metals on carbon(Pd/C, Pt/C) were so active for hydrogenolysis of CFC-113a that they even catalyzed the production reaction of overhydrogenated compounds such as $HCFC-133a(CF_3CH_2Cl)\;and\;HFC-143a(CF_3CH_3)$. $Al_2O_3$, which showed the high activity in the liquid phase reaction, did not show a remarkable activity. When $Al_2O_3$ was used in the liquid phase reaction, the hydrogenolysis of CFC-113a proceeded without any side products in THF. However, the same reaction in MeOH produced side products, such as $CH_3OCH_3\;and\;CH_3CH_2OCH_3$ from solvent. Based on this result, including heterogeneous catalysts, it was concluded that the solvent played an important role in the liquid phase reaction.

  • PDF

A study on the oxide etching using multi-dipole type magnetically enhanced inductively coupled plasmas (자장강화된 유도결합형 플라즈마를 이용한 산화막 식각에 대한 연구)

  • 안경준;김현수;우형철;유지범;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.403-409
    • /
    • 1998
  • In this study, the effects of multi-dipole type of magnets on the characteristics of the inductively coupled plasmas and $SiO_2$ etch properties were investigated. As the magnets, 4 pairs of permanent magnets were used and, to etch $SiO_2, C_2F_6, CHF_3, C_4F_8, H_2$, and their combinations were used. The characteristics of the magnetized inductively coupled plasmas were investigated using a Langmuir probe and an optical emission spectrometer, and $SiO_2$ etch rates and the etch selectivity over photoresist were measured using a stylus profilometer. The use of multi-dipole magnets increased the uniformity of the ion density over the substrate location even though no significant increase of ion density was observed with the magnets. The use of the magnets also increased the electron temperature and radical densities while reducing the plasma potential. When $SiO_2$ was etched using the fluorocarbon gases, the significant increase of $SiO_2$ etch rates and also the increase of etch uniformity over the substrate were obtained using the magnets. In case of gas combinations with hydrogen, $C_4F_8/H_2$ showed the highest etch rates and etch selectivities over photoresist among the gas combinations with hydrogen used in the experiment. By optimizing process parameters at 1000 Watts of inductive power with the magnets, the highest $SiO_2$ etch rate of 8000 $\AA$/min could be obtained for 50% $C_4F_8/50% H_2$.

  • PDF

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

Conceptual Design and Hydrodynamic Properties of a Moving Bed Reactor for Intrinsic $CO_2$ Separation Hydrogen Production Process ($CO_2$ 원천분리 수소 제조 공정을 위한 이동층 반응기의 개념 설계 및 수력학적 특성)

  • Park, Dong-Kyoo;Cho, Won-Chul;Seo, Myung-Won;Go, Kang-Seok;Kim, Sang-Done;Kang, Kyoung-Soo;Park, Chu-Sik
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • The intrinsic $CO_2$ separation and hydrogen production system is a novel concept using oxidation and reduction reactions of oxygen carrier for both $CO_2$ capture and high purity hydrogen production. The process consists of a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). The natural gas ($CH_4$) is oxidized to $CO_2$ and steam by the oxygen carrier in FR, whereas the steam is reduced to hydrogen by oxidation of the reduced oxygen carrier in SR. The oxygen carrier is fully oxidized by air in AR. In the present study, the chemical looping moving bed reactor having 200 L/h hydrogen production capacity is designed and the hydrodynamic properties were determined. Compared with other reactors, two moving bed reactors (FR, SR) were used to obtain high conversion and selectivity of the oxygen carrier. The desirable solid circulation rates are calculated to be in the range of $20{\sim}100kg/m^2s$ from the conceptual design. The solid circulation rate can be controlled by aeration in a loop-seal. To maintain the gas velocity in the moving beds (FR, SR) at the minimum fluidization velocity is found to be suitable for the stable operation. The solid holdup in moving beds decrease with increasing gas velocity and solid circulation rate.

Preparation and Characterization of $Cu/Ce_xZr_{1-x}O_2$ Catalysts for Preferential Oxidation of Carbon Monoxide (일산화탄소의 선택적 산화반응을 위한 $Cu/Ce_xZr_{1-x}O_2$ 촉매의 합성과 특성분석)

  • Lee, So-Yeon;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.54-63
    • /
    • 2007
  • Even traces of CO in the hydrogen-rich feed gas to proton exchange membrane fuel cells (PEMFC) poison the platinum anode electrode and dramatically decrease the power output. In this work, a variety of catalytic materials consisting of $Cu/Ce_xZr_{1-x}O_2$, (x = 0.0-1.0) were synthesised, characterized and tested for CO oxidation and preferential oxidation of CO (PROX). These catalysts prepared by hydrothermal and deposition-precipitation methods. The catalysts were characterized by XRD, XRF, SEM, BET, $N_2O$ titration and oxygen storage capacity (OSC) measurement. The effects of composition of the support and degree of excess oxygen were investigated fur activity and $CO_2$ selectivity with different temperatures. The composition of the support markedly influenced the PROX activity. Among the various $Cu/Ce_xZr_{1-x}O_2$ catalysts having different composition, $Cu/Ce_{0.9}Zr_{0.1}O_2$ and $Cu/Ce_{0.7}Zr_{0.3}O_2$ showed the highest activities (>99%) and selectivities (ca.50%) in the temperature range of $150{\sim}160^{\circ}C$. It was found that by using of $Ce_xZr_{1-x}O_2$ mixed oxide support which possesses a high oxygen storage capacity, oxidation-reduction activity of Cu-based catalyst was improved, which resulted in the increase of catalytic activity and selectivity of CO oxidation in excess $H_2$ environments.

  • PDF

Clean Separation of Difluoromonochloromethane(R22)/Hexafluoropropylene(HFP) by Using Liquid-Supported Membrane(BMIBF4/PVDF) (고정화 액막(BMIBF4/PVDF)에 의한 디플루오로-클오로메탄과 헥사플루오로프로필렌의 청정분리)

  • Choi, Pyoung-Ho;Kim, Chul-Ung;Kim, Beom-Sik;Lee, Jung-Min;Koo, Kee-Kahb
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.169-177
    • /
    • 2003
  • In order to develope a clean technology by liquid-supported membrane of ionic liquid/PVDF, the solubility of R22 and HFP gases using BMIBF4 as ionic liquid were measured at temperatures from 0 to $30^{\circ}C$, at total pressures up to 4 bars. The solubility of R22 in this ionic liquid was shown a rapid increasing tendency with increases of pressure and decreases of temperature, respectively, whereas the solubility of HFP was showed only a little in the same conditions. Based on these results, liquid-supported membranes of ionic liquid/PVDF were prepared by variables of the deposition amount of ionic liquid in polymer matrix, PVDF and were applied to the separation of fluoro-gases(R22, HFP) including $N_2$ gas. The permeability of R22 was rapidly increased by depending on the deposition amounts of ionic liquid, whereas both of HFP and $N_2$ were just showed so little. Especially, the diffusivity coefficient and solubility parameter of R22 were increased by lower operating temperatures and increased deposition amount of ionic liquid in 1iquid membrane. In conclusion, the selectivity of R22 against HFP was changed to 10-45 times depending on both of operating temperatures and the deposition amount of ionic liquid in BMIBF4/PVDF liquid membrane.

  • PDF

Preparation of PEBA/PDMS Blend Membranes for Separation of Carbon Dioxide (PEBA/PDMS 블렌드막의 제조 및 이산화탄소 분리 특성 연구)

  • Park, You-In;Kang, Ha-Sung;Nam, Mi-Yeon;Lee, Eun-Woo;Kim, Beom-Sik;Lee, Sang-Hak;Suh, Jeong-Kwon;Suh, Dong-Hak;Feng, Xianshe
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • Poly(ether block amide) (PEBA)/poly(dimethyl-siloxane) (PDMS) blend membranes (PEBA : PDMS = 5 : 2, 6 : 1 wt%) were prepared through the solution-casting and phase inversion process in order to demonstrate their superior performance in carbon dioxide separation. PDMS and PEBA (4033) were also prepared by the same method using n-butanol as a solvent. To study the gas permeation properties, the membranes were characterized with SEM and tested with carbon dioxide and nitrogen at $35^{\circ}C$ and pressure ranging from 3 to 5 atm. In conclusion, PEBA/PDMS blend membranes were shown to have selectivity for $CO_2/N_2$ separation that is 4 to 5 magnitudes greater than that of PDMS membrane at 3 atm.