• Title/Summary/Keyword: gas permeability analysis

Search Result 81, Processing Time 0.032 seconds

Thermo-Sensitive Polyurethane Membrane with Controllable Water Vapor Permeation for Food Packaging

  • Zhou, Hu;Shit, Huanhuan;Fan, Haojun;Zhou, Jian;Yuan, Jixin
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.528-532
    • /
    • 2009
  • The size and shape of free volume (FV) holes available in membrane materials control the rate of gas diffusion and its permeability. Based on this principle, a segmented, thermo-sensitive polyurethane (TSPU) membrane with functional gate, i.e., the ability to sense and respond to external thermo-stimuli, was synthesized. This smart membrane exhibited close-open characteristics to the size of the FV hole and water vapor permeation and thus can be used as smart food packaging materials. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), positron annihilation lifetimes (PAL) and water vapor permeability (WVP) were used to evaluate how the morphological structure of TSPU and the temperature influence the FV holes size. In DSC and DMA studies, TSPU with a crystalline transition reversible phase showed an obvious phase-separated structure and a phase transition temperature at $53^{\circ}C$ (defined as the switch temperature and used as a functional gate). Moreover, the switch temperature ($T_s$) and the thermal-sensitivity of TSPU remained available after two or three thermal cyclic processes. The PAL study indicated that the FV hole size of TSPU is closely related to the $T_s$. When the temperature varied cyclically from $T_s-10{\circ}C$ to $T_s+10^{\circ}C$, the average radius (R) of the FV holes of the TSPU membrane also shifted cyclically from 0.23 to 0.467 nm, exhibiting an "open-close" feature. As a result, the WVP of the TSPU membrane also shifted cyclically from 4.30 to $8.58\;kg/m^2{\cdot}d$, which produced an "increase-decrease" response to the thermo-stimuli. This phase transition accompanying significant changes in the FV hole size and WVP can be used to develop "smart materials" with functional gates and controllable water vapor permeation, which support the possible applications of TSPU for food packaging.

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Mechanism of improving quality of dry-aged pork loins in scoria-containing onggi, Korean earthenware as a storage container

  • Sung-Su Kim;Dong-Jin Shin;Dong-Gyun Yim;Hye-Jin Kim;Doo Yeon Jung;Hyun-Jun Kim;Cheorun Jo
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.797-809
    • /
    • 2023
  • Objective: Many scientists have investigated solutions to reduce microbiological risks in dry-aged meat after the dry-aging technology was revived for high quality and value-added premium meat product in the market. This study aimed to investigate the effect of scoria powder in onggi (Korean earthenware) on the meat quality of pork loins during 21 days of dry aging and to elucidate its mechanism of action. Methods: The pork loins were randomly divided into three groups: aged in vacuum-packaging, onggi containing red clay only (OR), and onggi containing 30% red clay and 70% scoria powder (OS). Microbial analyses (total plate count and Lactobacillus spp.) and physicochemical analyses (pH, shear force, volatile basic nitrogen [VBN], water activity, 2-thiobarbituric acid reactive substances, water content, water holding capacity, cooking loss, and color analysis) of aged meat were conducted. Far-infrared ray emission, quantification of immobilized L. sakei and microstructure of onggi were investigated to understand the mechanism. Results: On day 21, the meat aged in OS exhibited lower pH, shear force, VBN, and water activity than those aged in OR, along with an increase in the number of Lactobacillus spp. OS had a smaller pore diameter than OR, implying lower gas permeability, which could promote the growth of L. sakei. Conclusion: OS improved the microbiological safety and storage stability of pork loin during dry aging by increasing number of Lactobacillus spp. possibly due to low permeability of OS.

Effects of Film Packaging and Gas Composition on the Distribution and Quality of Ginseng Sprouts (새싹인삼의 필름포장과 가스조성이 품질특성에 미치는 영향)

  • Chang, Eun Ha;Lee, Ji Hyun;Choi, Ji Weon;Shin, Il Sheob;Hong, Yoon Pyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.152-166
    • /
    • 2020
  • Background: Ginsenosides, which have various physiological activities, are known to be abundant in the leaves and roots of ginseng. Ginseng sprouts can be used as a fresh vegetable and roots, stems, and leaves of ginseng can be consumed. This study aimed to investigate the effect of carbon dioxide treatment and the modified atmosphere (MA) packaging method in suppressing quality deterioration during the distribution of ginseng sprouts. Methods and Results: Ginseng sprouts were packed using Styrofoam, barrier film + non gas treatment, barrier film + gas treatment, 15 ㎛ polyamide (PA) double film + non gas treatment, 15 ㎛ PA double film + gas treatment, 25 ㎛ PA film + non gas treatment, or 25 ㎛ PA film + gas treatment. Quality parameters including gas composition, relative humidity, chlorophyll SPAD (Soil Plant Analysis Development) value, firmness, and rate of quality loss in ginseng sprouts were monitored at the following temperatures: 20℃, and 10℃. Ginseng sprouts packaged with 25 ㎛ PA film showed loss in quality because of wilting owing to low relative humidity within the film. Chlorophyll and firmness did not differ between film and gas treatments. The time point at which the combined loss from softening and decay owing to fungal, and bacterial infection and wilt reached 20% was considered the limit of distribution. At 20℃, the packaging not included in the 20% distribution loss rate limit or up to 7 days was 15 ㎛ PA double film + gas treatment. At 10℃, the packaging not included in the 20% distribution loss rate limit for up to 18 days were barrier film + gas treatment and 15 ㎛ PA double film + gas treatment. Conclusions: The film packaging suitable for the distribution of ginseng sprouts was found to be the barrier film and PA film with low gas permeability and maintaining hygroscopicity at 95% relative humidity. To prevent the loss in quality of ginseng sprouts, gas treatment (8% of O2 and 18% of CO2) in the film was found to be more suitable than no gas treatment for inhibition of decay.

A Simulation Study on the Analysis of Optimal Gas Storage System of the Depleted Gas Reservoir (고갈가스전에의 적정 가스저장시스템 분석을 위한 시뮬레이션 연구)

  • Lee, Youngsoo;Choi, Haewon;Lee, Jeonghwan;Han, Jeongmin;Ryou, Sangsoo;Roh, Jeongyong;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.515-522
    • /
    • 2007
  • In this study we have attempted to evaluate the technical feasibility of "BB-HY", which is depleted gas reservoir as a gas storage field, using the commercial compositional simulator "ECLIPSE 300". The "BB-HY" reservoir has an initial gas in place of 143 BCF which is relatively small, and its porosity and permeability are 19.5% and 50 md, respectively. For "BB-HY" gas reservoir, we have performed a feasibility analysis by investigating the cushion gas (or working gas), converting time to gas storage field, operation cycle, number of wells and the possible application of horizontal borehole as well. From the simulation results, it was found that the amount of cushion gas in "BB-HY" reservoir is required at least 50% of IGIP in order to operate stably as gas storage field. When one produces gas for longer time and hence the remaining gas in reservoir is less than optimal cushion gas, no technical problem was occurred as long as additional cushion gas is injected up to the optimal cushion gas. In the case of changing the operation cycle into producing gas for three months during winter season from producing five months, the result shows that either the cushion gas should be greater than 60% or the more number of wells should be drilled. Meanwhile, from the results of sensitivity analysis for the number of wells, in cases of operating six or eight vertical wells, the stable reproduction of the injected gas can not be possible in "BB-HY" gas reservoir since the remaining gas in reservoir is increased. Therefore, in "BB-HY" reservoir, at least ten vertical wells should be drilled for the stable operation of gas. This time, when three horizontal wells are additionally drilled including the existing two vertical wells, it was found that the operation of injection and reproduction of gas is relatively stable in "BB-HY" gas reservoir.

Concept of Rock Physics Modeling and Application to Donghae-1 Gas Field (암석물리모델링의 개념과 동해-1 가스전에의 적용)

  • Hu, Doc-Ki;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.173-178
    • /
    • 2008
  • In this paper, we will introduce rock physics modeling technique, which interrelate reservoir properties with seismic properties, and apply the technique to the Donghae-1 gas reservoir. From well-log data analysis, we obtained velocityporosity (Vp-$\phi$) relations for each formation. These relations can used to predict porosity from seismic data. In addition, we analyzed permeability data, which were obtained from core measurements and computational rock physics simulations. We then obtained permeability-porosity ($\kappa-\phi$) relations. Combining $\kappa-\phi$ with Vp-$\phi$ relations, we finally present quantitative Vp-$\kappa$ relations. As to Vp-$\phi$ modeling, we found that the degree of diagenesis and clay contents increase with depth. As to Vp-$\kappa$ relations, though \kappa-\phi relations are almost identical for all formations, we could obtain distinct Vp-$\kappa$ relations due to Vp-$\phi$ variations. In conclusion, the rock physics modeling, which bridges between seismic properties and reservoir properties, can be a very robust tool for quantitative reservoir characterization with less uncertainty.

  • PDF

Evaluation of Gas Transport Parameters through Dense Polymeric Membranes by Continuous-Flow Technique (연속흐름방식에 의한 기체투과특성 측정 및 분석)

  • 염충균;이정민;홍영택;김성철
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.141-150
    • /
    • 1999
  • A novel permeation apparatus was developed which could make the on-line measurements of both flux transient and permeate composition in gas permeation. The measurement by using the per¬meation apparatus was based on the continuous-flow technique. The transient measurement allowed the simultaneous determinations of permeation characteristics, such as, permeability, diffusion and solubility coefficients, and activation energies only with one experiment. The apparatus performance was illustrated by conducting the permeation of pure gases through two glassy polyimides and a rubbery poly (dimethyl¬siloxane) membranes, respectively. A comparison of the permeation characteristics determined from the flux transients was made with the literature values for verifying the confidence and accuracy of the measurement. Also, the analysis of the permeation transients obtained was carried out for the close investigation of the permeation behaviors of gases through membrane.

  • PDF

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: II. Verification of Numerical Model and Field Application (지하 LPG 저아공동에 인접한 단일절리에서의 이상유체거동해석: II. 수치모형의 검증 및 적용)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.449-458
    • /
    • 2001
  • In order to verify the numerical model, which was developed to simulate the behavior of the two-phase fluid flow in a single fracture, the characteristic equation of relative permeability was incorporated into the developed numerical model, and the computed results were compared with the experimental results of the model test. As results of the sensitivity analysis on the roughness and the aperture size of fracture, the gas velocity was inversely proportional to the fracture roughness, and not proportional to the square of aperture size which is usually observed in single phase flow in a single fracture. The numerical model was applied to the underground LPG storage terminal in order to check the field applicability. The simultaneous flow of water and gas in accordance with the operation pressures in a single fracture near cavern was simulated by the model. It was shown that the leaked gas was able to be controlled in a single fracture neither by the pressure of operation nor by that of groundwater in case the fracture became smoother in roughness and smaller in aperture size.

  • PDF

Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area (서울지역 라돈농도의 분포예측을 위한 공간분석법 연구)

  • Baek, Seung-A;Lee, Tae-Jung;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

The Characteristics of Hydrogen Permeation through Pd-coated $Nb_{56}Ti_{23}Ni_{21}$ Alloy Membranes (Pd 코팅된 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 수소투과 특성)

  • Jung, Yeong-Min;Jeon, Sung-Il;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • We make a studyof the hydrogen permeability and chemical stability of $Nb_{56}Ti_{23}Ni_{21}$ metal alloy membrane. For this purpose, we produced the $Nb_{56}Ti_{23}Ni_{21}$ membrane which has 10 mm diameter and 0.5 mm thick, and experiment the hydrogen transport properties under two kinds of feed gas ($H_2$ 100%; $H_2$ 60% + $CO_2$ 40%) at $450^{\circ}C$C with variation of absolute pressure.The maximum hydrogen permeation flux was $5.58mL/min/cm^2$ in the absolute pressure 3 bar under pure hydrogen. And each case of feed gases about gas composition, the permeation fluxes were satisfied with Sievert's law, and the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure. After permeation test, we experiment the stability and durability of $Nb_{56}Ti_{23}Ni_{21}$ alloy membrane for carbon dioxide by XRD analysis.