• Title/Summary/Keyword: gas nitriding

Search Result 113, Processing Time 0.023 seconds

Effects of Gas Composition on the Characteristics of Surface Layers Produced on AISI316L Stainless Steel during Low Temperature Plasma Nitriding after Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄 및 질화처리 시가스조성이 표면특성에 미치는 영향)

  • Lee, In-Sup;Ahn, Yong-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.116-121
    • /
    • 2009
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) offer the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. The 2-step low temperature plasma processes were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The influence of gas compositions on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ and concentration of N on the surface increased with increasing both nitrogen gas and Ar gas levels in the atmosphere. The thickness of ${\gamma}_N$ increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness was independent of nitrogen and Ar gas contents and reached up to about 1200 $HV_{0.1}$ which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was also much enhanced than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

Effect of Heat Treatment Characteristic on the Gas Nitriding of Stainless Steels (스테인리스강의 가스질화에 미치는 열처리 조건의 영향에 관한 연구)

  • Kim, H.G.;Hwang, G.S.;Sun, C.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.2
    • /
    • pp.78-82
    • /
    • 2003
  • Nitrided compound layer and diffusion layer structure were observed by SEM. The compound layer and the constituent of nitrided surface of STS 304, STS 316, STS 410 and SACM 645 steel were analysed using EMPA and XRD respectively. The depth of nitriding layer that is obtained from similar nitriding condition decrease in the order of SACM 645 > STS 410 > STS 316 > STS 304. Result of phase transformation of the nitrided at $550^{\circ}C$ by XRD analysis were as follows; The austenitic stainless steel was mainly consist of $Cr_2N$ accompanying with $Fe_4N$ and $Fe_{2-3}N$ phase and martensitic stainless steel was mainly consist of present $Fe_{2-3}N+Cr_2N$ phase, but SACM 645 steel was $Fe_{2-3}N$ phase present only.

The Influence of Ar Gas in the Nitriding of Low Temperature Plasma Carburized AISI304L Stainless Steel. (AISI304L 스테인리스강의 저온 플라즈마 침탄처리 후 질화처리 시 Ar 가스가 표면 경화층에 미치는 영향)

  • Jeong, Kwang-ho;Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Conventional plasma carburizing or nitriding for austenitic stainless steels results in a degradation of corrosion resistance. However, a low temperature plasma surface treatment can improve surface hardness without deteriorating the corrosion resistance. The 2-step low temperature plasma processes (the combined carburizing and post nitriding) offers the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. In the present paper, attempts have been made to investigate the influence of the introduction of Ar gas (0~20%) in nitriding atmosphere during low temperature plasma nitriding at $370^{\circ}C$ after low temperature plasma carburizing at $470^{\circ}C$. All treated specimens exhibited the increase of the surface hardness with increasing Ar level in the atmosphere and the surface hardness value reached up to 1050 HV0.1, greater than 750 $HV_{0.1}$ in the carburized state. The expanded austenite phase (${\gamma}_N$) was observed on the most of the treated surfaces. The thickness of the ${\gamma}_N$ layer reached about $7{\mu}m$ for the specimen treated in the nitriding atmosphere containing 20% Ar. In case of 10% Ar containing atmosphere, the corrosion resistance was significantly enhanced than untreated austenitic stainless steels, whilst 20% Ar level in the atmosphere caused to form CrN in the N-enriched layer (${\gamma}_N$), which led to the degradation of corrosion resistance compared with untreated austenitic stainless steels.

Development of Controlled Gas Nitriding Furnace(III) : Application of Controlled Gas Nitriding Process and Evaluation of Durability for SCR420H Annulus gear (질화포텐셜 제어 가스질화로 개발(III) : SCR420H 에널러스기어에 대한 제어질화 적용 및 내구성 평가)

  • Won-Beom Lee;Minjae Jung;Min-Sang Kwon;Taehwan Kim;Chulwoo Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.161-173
    • /
    • 2023
  • This study investigated the effects of KN and process time on the formation of a compound layer at a nitriding temperature of 540℃ for SCR420H material. As a result of controlled nitriding from 3 h to 20 h at KN 1.2 atm-1/2, compound layers were formed up to about 10 ㎛, and an effective hardening depth of about 460 ㎛ was obtained. Initially, an ε+γ' complex phase was formed, and the phase fraction changed over time, and finally, the fraction of ε phase decreased to less than 1%. With higher KN, the compound thickness increased, a pore layer was formed on the surface, and the surface hardness decreased. By applying the controlled nitriding process, it was possible to produce annulus gears with a compound thickness of 12.8 ㎛ and an ε phase of 5% or less. The annulus gears made through controlled nitriding were mounted on a 6-speed transmission and tested for durability. As a result, the durability test of 250,000 km was satisfied, and the transmission efficiency was also confirmed to be expected.

Surface Roughness and Formation of Compound Layer in the Controlled Gaseous Nitriding Process on Cast Iron GC250D (GC250D의 가스분위기 제어질화 공정에서 화합물층의 형성에 따른 표면조도의 변화)

  • Minjae Jeong;Seokwon Son;Jae-Lyoung Wi;Yong-Kook Lee;Won-Beom Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.49-57
    • /
    • 2024
  • We investigated the changes in microstructure and surface roughness of the compound layer of GC250D gray cast iron, commonly used in brake discs, during gas nitriding. The gas atmosphere of the nitriding process was controlled with a hydrogen partial pressure of 49.5%, and the process was conducted at a nitriding temperature of 520℃ with various process times. As the nitriding process time of the GC250D material increased, both the depth of hardening and the thickness of the compound layer increased, with a maximum surface hardness of approximately 1265 HV0.1 was measured. Additionally, the surface roughness increased with the process time. Phase analysis of the compound layer revealed an increase in the proportion of the γ' phase as the nitriding process time increased. Changes in the formation of the compound layer were observed depending on the orientation of graphite within the material, leading to the formation of wedges. Therefore, the increase in surface roughness appears to be attributed to the uneven compounds, the expansion of the compound layer and wedges formed on the surface during the nitriding process.

A Study on the Corrosion Fatigue Characteristics of Ion-nitrided SCM4 Steel in Rotationg Bending (이온질화처리한 SCM4 강의 회전굽힘 부식피로 특성에 관한 연구)

  • Lee, Du-Yong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.75-84
    • /
    • 1989
  • This paper deals with the effect of $N_2$ and $H_2$gas mixture ratio and ion-nitriding time in the corrosion fatigue fracture behavior of ion-nitrided SCM4 steel with notch subject to rotary bending stress. The specimens were treated rapid water cooling after ion-nitriding at $500^{\circ}C$ Torr for 1 hour and 3 hours in gas mixtures of 80% $N_2$and 50% $N_2$. The fatigue limit and the fracture strength of corrosion fatigue depended on $N_2$gas quantity and ion-nitriding time. The ion-nitrided specimens showed about 88 .approx. 158% increase in the fracture strength of corrosion fatigue in $10^6$ cycles than non-nitrided specimens. The corrosion failure is due to corrosion pitting of the surface, and the propargation of cracks started at the surface into the core.

  • PDF

The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter- (마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향-)

  • Lee, J.S.;Kim, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

A study on the Effect for Process Parameters on the Micro-pulse Plasma Nitriding of Ductile Cast Iron (구상흑연주철의 마이크로 펄스 플라즈마 질화에 미치는 공정변수의 영향에 관한 연구)

  • 김무길;이철민;권성겸;정병호;이재식;유용주;김기준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 2000
  • The effect of time, temperature and gas composition on the case hardened thickness, hardness and nitride formation in the surface of ductile cast iron(GCD400) have been studied by micro-pulse plasma technique. Typically, external compound layer and internal diffusion layer which is much thicker than compound layer was observed in the nitride hardening of ductile cast iron. The relative amount kind of phases formed in the nitrided hardening changed with the change of nitriding conditions. Generally, only nitride phases such as $\gamma^'$($Fe_4N$), or $\varepsilon$($Fe_{2-3}N$) phases were detected in compound layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. The optimum nitriding temperature was obtained at $520^{\circ}C$. The nitrided hardening thickness parabolically with nitriding time(t) and thus, the case hardened layer(d) fits well with the typical parabolic equation ; d=kt. The material constant k for GCD400 nitrided at $520^{\circ}C$ was $0.04919\times10^3{\mu}m.hr^{-1/2}$.

  • PDF

The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel (316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향)

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.