• 제목/요약/키워드: gas hydrate formation

검색결과 112건 처리시간 0.038초

퇴적층에서의 가스 하이드레이트 생성 특성 (Formation characteristics of gas hydrate in sediments)

  • 이재형;이원석;김세준;김현태;허대기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.630-633
    • /
    • 2005
  • Some gases can be formed into hydrate by physical combination with water under appropriate temperature and pressure condition. Besides them, it was found that the pore size of the sediments can affect the formation and dissociation of hydrate. In this study, formation temperatures of carbon dioxide and methane hydrate have been measured using isobaric method to investigate the effects of flow rates of gases on formation condition of hydrate in porous rock samples. The flow rates of gases were controlled using a mass flow controller. To minimize Memory effect, system temperature increased for the dissociation of gas hydrates and re-established the initial saturation. The results show that the formation temperature of hydrate decreases with increasing the injection flow rate of gas. This indicates that the velocity of gas in porous media may act as kinds of inhibitor for the formation of hydrate.

  • PDF

탄소나노튜브를 이용한 메탄 하이드레이트 형성 (Methane hydrate formation Using Carbon Nano Tubes)

  • 박성식;서향민;김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.549-552
    • /
    • 2009
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity at specially temperature and pressure condition, and water molecule and each other from physically-bond. $1m^3$ hydrate of pure methane can be decomposed to the maximum of $172m^3$ at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18~24% less than the liquefied transportation. However, when methane hydrate is formed artificially, the amount of consumed gas is relatively low due to a slow reaction rate between water and methane gas. In this study, for the better hydrate reaction rate, there is make nano fluid using ultrasonic dispersion of carbon nano tube. and then, Experiment with hydrate formation by nano fluid and methane gas reaction. The results show that when the carbon nano tubes of 0.004 wt% was added to pure water, the amount of consumed gas was about 300% higher than that in pure water and the hydrate formation time decreased.

  • PDF

NGH 수송기술 개발을 위한 주요 인자별 제조특성 실험 연구 (An Experimental Investigation on Effects of Gas Hydrate Formation Factors For NGH Transport Technology Development)

  • 김유나;신창훈;한정민;신광식;김병주;이정환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.511-514
    • /
    • 2007
  • Gas hydrate has a unique property that can store a large volume of gas in water as a solid form. Even though investigations for natural gas storage technology have been carried out for several decades, there are still a lot of unsolved problems due to complex formation process, low formation speed, high energy consumption and so on. So, lots of experiments were conducted to overcome these weaknesses and to develop artificial NGH formation technology applicable to industrial-scale storage and commercial transport. In this study, some series of experiments were performed to analyze both stirred and unstirred system especially about the influences of several gas hydrate formation factors such as agitation speed, system temperature, SDS concentration, etc. As a result, optimum range of SDS concentration and temperature that could enhance the storage capacity and shorten the formation time were found. And it is obviously presented that SDS such a kind of surfactant promotes gas hydrate formation dramatically and the quantity of stored gas are proportional to agitation speed in stirred system.

  • PDF

하이드레이트 제조시 다양한 화학물질 첨가에 의한 영향 분석 (An analysis of influence on chemical additives in gas hydrate formation)

  • 이영철;모용기;조병학;백영순
    • 한국가스학회지
    • /
    • 제8권4호
    • /
    • pp.23-29
    • /
    • 2004
  • 이 연구는 가스 하이드레이트 제조시 첨가제로 아세톤, 디메틸부탄, 폴리비닐알코올, 메탄올, 에틸렌글리콜등의 다양한 화학약품을 이용하여 하이드레이트 생성 특성을 변화시키는 것이다. 아세톤, 디메틸부탄, 폴리비닐 알코올을 첨가하여 하이드레이트를 제조한 경우 가스저장능력은 순수한 물로 하이드레이트를 제조한 경우보다 증가하였다. 이중 폴리비닐알코올은 다른 첨가제보다 더 많은 가스를 저장하므로 가장 유용한 생성 촉진제로 판단된다. 사용된 첨가제중 메탄올과 에틸렌글리콜은 생성 억제제의 특성을 나타내었고 에틸렌글리콜보다 메탄올이 조금 더 낮은 가스 저장능력을 나타내어 유용한 생성 억제제로 판단된다. 그러나 생성 억제제로서의 메탄올과 에틸렌글리콜이 낮은 농도인 경우 가스 저장능력이 순수한 물보다 증가하는 생성 촉진제의 특성을 보여준다.

  • PDF

가스하이드레이트 제조성능 향상을 위한 영향인자 검토 연구 (An experimental study on the factors to improve the formation performance of gas hydrate)

  • 신창훈;김유나;권옥배;박승수;한정민;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2989-2994
    • /
    • 2007
  • Gas hydrates are ice-like crystalline compounds that form under low temperature and elevated pressure conditions. Although hydrate formation can pose serious flow-assurance problems in the gas pipelines or facilities, gas hydrates present a novel means for natural gas storage and transportation with potential applications in a wide variety of areas. An important property of hydrates that makes them attractive for use in gas storage and transportation is their very high gas-to-solid ratio. In addition to the high gas content, gas hydrates are remarkably stable. The main barrier to development of gas hydrate technology is the lack of an effective method to mass produce gas hydrate in solid form. The first objective of this study is investigating the characteristics of gas hydrate formation related to several factors such as pressure, temperature, water-to-storage volume ratio, concentration of SDS, heat transfer and whether stirred or not respectively. And the second objective is clarifying the relation between the formation efficiency and each factor in order to find the proper way or direction to improve the formation performance.

  • PDF

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.

천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구 (Experimental Investigation on the Enhancement of Gas Hydrate Formation for tile Solid Transportation of Natural Gas)

  • 김남진
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.94-101
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate) is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF

천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구 (Experimental Investigation on the Enhancement of Gas Hydrate Formation for the Solid Transportation of Natural Gas)

  • 김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.399-402
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate (is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF

미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구 (Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice)

  • 이종협;강성필
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.690-695
    • /
    • 2012
  • 가스 하이드레이트는 순수한 물이 이루는 격자구조 내에 다양한 가스분자들이 선택적으로 포획되어진 고체상의 화합물로, 최근 이산화탄소를 포집, 수송, 저장 하는 CCS (Carbon Capture and Storage)기술에 이를 응용하려는 연구가 활발히 진행되고 있다. 가스 하이드레이트를 적용한 CCS 기술의 핵심은 효과적으로 $CO_2$ 하이드레이트를 제조하는 기법의 개발이며, 본 연구에서는 초음파 노즐을 이용하여 수십 나노미터 직경의 미세수적을 통해 고속의 $CO_2$ 하이드레이트 제조기술 개발하였고, 이 과정의 특성을 파악해 보았다. 주파수 2.4 MHz의 초음파 노즐을 이용하여 미세직경의 수적을 분무하고 이송가스(carrier gas)로 $CO_2$를 적용, 미세 수적과 $CO_2$가 동시에 급속 냉각되는 저온 반응기에 도입되어 다공질 얼음입자가 직접 평균 $10.7{\mu}m$ 직경의 $CO_2$ 하이드레이트로 생성되는 연속공정을 개발하였다. 미세직경 얼음입자를 시작물로 하여 정압조건에서 $CO_2$ 하이드레이트가 생성되도록 하며 가스포집량을 측정, 그의 가스 포집속도를 알아본 결과, 미세직경이며 동시에 다공 얼음이 제공하는 높은 기-고 접촉면적으로 인해 가스 하이드레이트 생성에 매우 적합한 것을 알 수 있었으며, 제조된 $CO_2$ 하이드레이트의 자기보존효과(self-preservation effect)를 실험으로 확인함으로서 $CO_2$ 가스의 수송에도 이용 가능함을 알 수 있었다.

산화탄소나노튜브를 이용한 메탄 하이드레이트 형성 (Effect of Oxidation Multi-Walled Carbon Nanotubes for Methane Hydrate Formation)

  • 박성식;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.11-16
    • /
    • 2010
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity and each other from physically-bond at specially temperature and pressure condition. $1m^3$ of methane hydrate can be decomposed into the maximum of $216m^3$ of methane gas under standard condition. If these characteristics of hydrate are utilized in the opposite sense, natural gas can be fixed into water in the form of a hydrate solid. Therefore the use of hydrate is considered to be a great way to transport and store natural gas in large quantity. However, when methane hydrate is formed artificially, the amount of gas that is consumed is relatively low, due to the slow reaction rate between water and methane gas. Therefore for practical purposes in the application, the present investigation focuses on increasing the amount of gas consumed by adding chemically oxidized OMWCNTs to pure water. The results show that when 0.003 wt% of oxidation multi-walled carbon nanotubes was added to pure water, the amount of gas consumed was almost four times more than that of pure water indicating its effect in hydrate formation and the hydrate formation time decreased at alow subcooling temperature.