• Title/Summary/Keyword: gas generator cycle

Search Result 128, Processing Time 0.038 seconds

Performance Dispersion Analysis of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체 로켓 엔진의 성능 분산 해석)

  • Choi Hwan Seok;Nam Chang Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.87-91
    • /
    • 2004
  • It is definitely required to control dispersion of the rocket engine performance in order to accomplish the mission of launch vehicle successfully. We performed the dispersion analysis of gas generator cycle LRE (liquid rocket engine) accompanied with ANASYN. As a result, the vacuum thrust dispersion of the engine was $+5.34\%,\;-5.27\%$ and the mixture ratio deviated $+9.07\%,\;-9.82\%$ from the nominal value due to the errors of components and engine inlet condition of propellants. By applying the gas generator regulator only, the dispersion of the engine performance increases. Error in turbine efficiency is the most influential factor to the dispersion of engine performance.

  • PDF

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • 서성현;최환석;한영민;김성구
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.56-60
    • /
    • 2006
  • It is essential to predict thermodynamic properties of combustion gas with respect to a propellant mixture ratio for the development of a gas generator for a liquid rocket engine. The present study shows the temperature measurement of exit combustion gas as a function of a mixture ratio through the series of combustion tests of a fuel-rich gas generator with liquid oxygen and Jet A-1. The measurements of dynamic and static pressures, and combustion gas temperatures allowed the estimation of thermodynamic properties like a specific heat ratio, a gas constant, and a constant pressure specific heat of the combustion gas. The comparison of the experimental results with predictions made by interpolation parameters obtained from the modification of the chemical equilibrium code indicates that the interpolation method calibrated using the temperature measurements can be utilized as an effective tool for the initial design of a fuel-rich gas generator.

Ratio Optimization Between Sizes of Components of Heat Recovery Steam Generator in Combined Cycle Gas Turbine Power Plants (복합사이클 발전플랜트 폐열회수 보일러의 구성요소 크기비의 최적화)

  • In, Jong-Soo;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • This paper proposes a new approach to find the optimum ratios between sizes of the heat exchangers of the heat recovery steam generator (HRSG) system with limited size to maximize the efficiency of the steam turbine (bottom) cycle of combined cycle power plants (CCPP), but without performing the bottom cycle analysis. This could be achieved by minimizing the unavailable exergy (the sum of the destroyed and the lost exergies) resulted from the heat transfer process of the HRSG system. The present approach is relatively simple and straightforward because the process of the trial-and-error method, typical in performing the bottom cycle analysis for the system optimization, could be avoided. To demonstrate the usefulness of the present method, a single-stage HRSG system was chosen and the optimum evaporation temperature was obtained corresponding to the condition of the maximum useful work. The results show that the optimum evaporation temperature based on the present exergy analysis appears similar to that based on the bottom cycle analysis. Also shown is the dependency of size (NTU) ratios between the heat exchangers on the inlet gas temperature, which is another important factor in determining the optimum condition once overall size of the heat recovery steam generator is given. The present approach turned out to be a useful tool for optimization of the singlestage HRSG systems and can easily be extended to multi-stage systems.

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • Seo Seong-Hyeon;Han Yeoung-Min;Kim Sung-Ku;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.118-122
    • /
    • 2006
  • For the development of a gas generator of a liquid rocket engine, the prediction of thermodynamic properties of combustion gas with respect to a propellant mixture ratio becomes critical. The present study focuses on the temperature measurement of exit combustion gas as a function of a mixture ratio through combustion tests of a fuel-rich gas generator propelled by Lox/Jet A-1. The measurement of combustion dynamic and static pressures allowed indirect estimation of thermodynamic properties like specific heat ratio, gas constant, and constant pressure specific heat. Comparing the results with empirical prediction through an interpolation reveals that the interpolation method calibrated using temperature results can be utilized as an effective tool for the design of a fuel-rich gas generator.

  • PDF

Analysis of high efficiency natural gas liquefaction cycle with mixed refrigerant (고효율 혼합 냉매 천연 가스 액화 공정에 대한 고찰)

  • Baek, Seung-Whan;Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.181-185
    • /
    • 2008
  • The new concept for liquefaction of natural gas has been designed and simulated in this paper. Conventional liquefaction cycles are usually composed with Joule-Thomson valves at lower temperature refrigerant cycle. The new concept of natural gas liquefaction is discussed. The main difference with conventional liquefaction process is the presence of the turbine at low temperature of MR (mixed refrigerant) cycle. The turbine acts as expander but also as an energy generator. This generated energy is provided to the compressor which consumes energy to pressurize refrigerants. The composition of the mixed refrigerant is investigated in this study. Components of the refrigerant are methane, propane and nitrogen. Composition for new process is traced with Aspen HYSYS software. LNG heat exchangers are analyzed for the new process. Heating and cooling curves in heat exchangers were also analyzed.

  • PDF

Performance Analysis of a 50㎾ Turbo-Generator Gas Turbine Engine with a Recuperator (리큐퍼레이터를 고려한 50KW급 터보제너레이터 가스터빈 엔진의 성능해석)

  • 김수용;수다레프
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.48-55
    • /
    • 1999
  • Performance analysis of a 50KW turbo-generator gas turbine engine with a recuperator was studied. Recuperated cycle has been employed to meet maximum fuel economy and ultra low emissions especially for military and vehicular engines. From thermodynamic stand point, it is known that recuperative cycle can contribute most to enhance thermal cycle efficiency for the Pressure ratios under 10 and of comparatively low turbine inlet temperature. Efficiency of a simple cycle with a recuperator increases relatively about 30% than without one at effectiveness of 0.5. Pressure losses in the heat exchanger less than 5.2% is considered in the design process. A tubular type heat exchanger is selected for this particular engine because it can provide simple construction as well as structural sturdiness and excellent leak tightness.

  • PDF

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

Finding Optimal Mass Flow Rate of Liquid Rocket Engine Using Generic Algorithm (유전알고리즘을 이용한 액체로켓엔진 최적 유량 결정)

  • Lee, Sang-Bok;Jang, Jun-Yeoung;Kim, Wan-Jo;Kim, Young-Ho;Roh, Tae-Seoung;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.93-96
    • /
    • 2011
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Mass flow rate to the main thrust chamber, mass flow rate to the gas generator and chamber pressure have been selected as design variables. The target engine is the open gas generator cycle using the LO2/RP-1 propellant. The objective function of design optimization is to maximize the specific impulse with condition of energy balance between the pump and the turbine. The properties of the combustion chamber have been obtained from CEA2. Pump & turbine efficiencies and properties of the gas generator have been modeled mathematically from reference data. The result shows 3~4% errors for the specific impulse and 2~6% errors for the pump power of the gas generator cycle compared to references.

  • PDF

Definition of Engine Component Performance Test Range of 75tf Class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.91-97
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.