• Title/Summary/Keyword: gas explosions

Search Result 95, Processing Time 0.025 seconds

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

Assessment of Gas Release Dispersion and Explosion in Pipeline (파이프라인에서의 가스누출 확산과 폭발 영향평가)

  • Jung In-Gu;Yoo Sang-Bin;Lee Su-Kyung;Kim Lae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 1998
  • The risk assessments for gas leak in underground pipeline are conducted about the explosion accident of AHYUN-DONG underground service-base on December, 1994(Gaussian gas, LNG) and the accident of TAEGU subway on April 1995(Heavy gas LPG). We have calculated the total mass of gas release and have respected the efficient of explosions with report of the spot. The dispersion zones of LNG were calculated as large as fifteen times to those of LPG by ALOHA. The effects of thermal radiation from LNG explosion were assumed less than that from LPG by PHAST.

  • PDF

The Dynamic Behavior of Steel Structure under Blast Load (폭발하중에 의한 철골조 건물의 동적거동)

  • Kwag, Jin-I;Kim, Jin-Koo;Park, Jun-Hei
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.313-318
    • /
    • 2008
  • The blast load is caused by gas or bomb explosions. In this study blast load was simulated using the computer code CONWEP and nonlinear analysis was performed on three-story steel moment frames. It was observed from the analysis results that the response of the structures varied depending on the opening area and the explosive weight.

  • PDF

A Review of TNT Equivalent Method for Evaluating Explosion Energy due to Gas Explosion (가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰)

  • Kwon, Sangki;Park, Jung-Chan
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.1-13
    • /
    • 2015
  • Accidents related to gas explosion are frequently happened in foreign countries and in Korea. For the evaluation and the analysis of gas explosions, TNT equivalent methods are used. In this study, the influence of the selection of chemical equation in TNT explosion and the selection of enthalpy of the products on the explosion energy, detonation pressure, velocity of detonation, and temperature was calculated. Depending on the chemical equations, the maximum detonation pressure can be 2 times higher than the minimum. As an example for applying TNT equivalent method, an explosion of methane gas in a confined volume was assumed. With the TNT equivalent, it was possible to predict the variation of peak overpressure and impulse with the distance from the explosion location.

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF

Experimental Study on Gas Explosion According to the Effect of Confinement and Congestion Levels (밀폐도 및 밀집도의 영향에 따른 가스폭발 실험 연구)

  • Boohyoung Bang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.56-61
    • /
    • 2023
  • The plant is an important facility as a infrastructure, and ensuring safety against possible accidents such as gas leaks and explosions must be considered in the design. However, there is little study on explosion pressure in plants for reasons such as economic feasibility, and overpressure data on this field is insufficient. In this study, an experimental design plan considering the explosion scenario that may occur in the plant was presented, and the explosion pressure was confirmed through an explosion experiment. Hydrogen-methane mixed gas was used as a combustible material, and the effect of confinement and congestion on overpressure was studied. The effect of overlapping pressure waves during deflagration and the turbulence effect by congested pipes are discussed. The results of this study can be used as input data in various safety designs.

TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY

  • Sanchez-Salcedo, F.J.;Santillan, A.;Franco, Jose
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.

3-Dimensional Finite Element Analysis for Collecting Structure of Combustible Metal Dust During Explosion (가연성 금속분진 폭발시 저장 및 포집용 구조물에 대한 3차원 유한요소 해석)

  • Jang, Chang-Bong;Yong, Jong-Won;Baek, Jong-Bae;Kwon, Hyuck-Myun;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.19-24
    • /
    • 2011
  • Due to the latest industrial flow comes mainly switch to high-tech industries, combustible metals as Al, Mg, Li, Zn more require to use for the aircraft, car, cell phones, electronics and others. As a result, Increasing the processing of combustible metals due to increase in amount of combustible metals giving rise dust explosions also. Most Explosions caused by combustible metal dust, occurred in air cleaning device of local exhaust ventilation to capture and store the combustible dust. Therefore, this study was conducted to present and analyze technically that deformation and rupture shape of air cleaning device structure by Finite Element Analysis(FEA) rather than a simple prediction, in case of explosion occurs in an air cleaning device.

A Review of the Different Models for Predicting Blast Overpressures Caused by Vapor Cloud Explosions (증기운 폭발에 의해 발생된 폭풍 과압 예측 모델 검토)

  • Park Dal Jae;Lee Young Soon;Lim Young Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.50-57
    • /
    • 2000
  • Past accidents have shown that vapor cloud explosions are the predominant cause of the largest losses in the chemical and petrochemical industries due to the generation of significant overpressures. Prediction of such overpressure is of great concern and a knowledge of the likely overpressure is needed for the design of equipment, safety cases and emergency planning. For these reasons, risk assessment for vapor cloud explosion is crucial and this assessment can be carried out using the different models including TNT-Equivalency, TNO Hemispherical, TNO Multi-Energy and CFD models. Accordingly, in this paper, the published VCE prediction models are reviewed to provide a critical comparison of the different models used for the quantification of explosion hazards, in terms of the fundamental assumptions employed, and their predictive accuracy

  • PDF

A Study on the Installation of Rupture Disk for Emergency Discharge of Dangerous Substances in Case of Styrene Monomer Runaway Reaction (스티렌모노머 폭주반응 시 위험물 비상 배출을 위한 파열판 적정 크기 선정에 관한 연구)

  • Sang Ryung Kim;Jae Min Ryu;Hyang Nam Choi;Jong Su Hyun;Hyung Sik Byun
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.24-31
    • /
    • 2024
  • In the chemical industry, fires and explosions constantly occur due to runaway reactions during the production of various chemical products. To prevent this, much research has been conducted, and the possibility of runaway reactions for each substance is reviewed and interlocking devices are installed to prepare for adverse reactions to prepare for fires and explosions. However, despite legal and technical safety measures, accidents due to runaway reactions still occur every year. Accordingly, in this study, based on cases of fire and explosion accidents in styrene monomer reactors, the discharge capacity during runaway reactions was examined through experiments and graphs. Unlike the commonly calculated fire equation, in the case of a runaway reaction where pressure and temperature increase rapidly, discharge is made in two phases rather than a single phase, so the size of the rupture disk must also increase, and the orientation must be adjusted before the rupture disk is installed at the top of the pressure vessel. It was found that position adjustment was necessary.