• Title/Summary/Keyword: gas diffusion

Search Result 1,043, Processing Time 0.029 seconds

On the Short Term Air Pollution Dispersion Model for the Single Souce -Diffusion Experiment With Tracer Gas- (單一 排出源大氣汚染 短期모델에 관한 硏究 -Tracer Gas에 의한 擴散實驗-)

  • 李鍾範;姜寅求
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.84-96
    • /
    • 1989
  • To evaluate the short term air pollution dispersion model, the diffusion experiment was conducted on the flat terrain near Chuncheon. Sulfur hexafluoride $(SF_6)$ gas was used to determine the horizontal spread of plume $(\sigmay)$ for calculated by CRSTER model. Results show that CRSTER model underestimates $\sigma$y because averaging time adjustment is not applied to calculate the $\sigma$y. The scheme that can estimate the atmospheric stability more accurate than Turner method, was presented.

  • PDF

A numerical model for combustion process of single coal particle in hot gas (고온 유동장 내 석탄 단입자 연소과정의 특성화를 위한 수치적 연구)

  • Niu, Xiaoyang;Lee, Hookyung;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.301-304
    • /
    • 2015
  • With the experiment observation of single particle combustion, this model is built for the numerical analysis of the process. It's about the single coal particle combustion process under different conditions with reasonable assumptions. The model can express the mass, radius, density, temperature changing with different particle sizes, oxygen concentration and gas temperature. It also includes the flame sizes change in different condition and the diffusion of each species. The result shows the characters of the combustion.

  • PDF

Thermal Transport Phenomena in the FET Typed MWCNT Gas Sensor with the 60 μm Electrode Distance (60 μm의 전극 간극을 갖는 FET식 MWCNT 가스센서에서 열 유동 현상)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.403-407
    • /
    • 2015
  • Generally, MWCNT, with thermal, chemical and electrical superiority, is manufactured with CVD (chemical vapor deposition). Using MWCNT, it is comonly used as gas sensor of MOS-FET structure. In this study, in order to repeatedly detect gases, the author had to effectively eliminate gases absorbed in a MWCNT sensor. So as to eliminate gases absorbed in a MWCNT sensor, the sensor was applied heat of 423[K], and in order to observe how the applied heat was diffused within the sensor, the author interpreted the diffusion process of heat, using COMSOL interpretation program. In order to interpret the diffusion process of heat, the author progressed modeling with the structure of MWCNT gas sensor in 2-dimension, and defining heat transfer velocity($u={\Delta}T/{\Delta}x$), accorded to governing equation within the sensor, the author proposed heat transfer mechanism.

Mechanisms of Gas Permeation through Microporous Membranes - A Review (미세 다공막을 통한 기체 투과기구)

  • 황선탁
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • A review is presented for various gas transport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the interaction between gas molecules and the pore walls. For microporous membranes whose pores are small and the internal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, then the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Mechanisms of gas permeation through microporous membranes - A review

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.1-13
    • /
    • 1995
  • A review is presented for various gas tranport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the inateraction between gas molecules and the pore walls. For microporous membranes whose pores are small and the intenal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, them the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.

A Comparison of Middle and High School Students' Conceptual Understanding in Stoichiometry and Gas State (화학양론과 기체 상태에 대한 중.고등학생의 개념 이해도 비교)

  • Noh, Tae-Hee;Lim, Hee-Jun;Woo, Kyu-Whan
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.437-451
    • /
    • 1995
  • Middle and high school students' conceptual understanding about stoichiometry, gas laws, and diffusion was compared with essay type test and multiple choice test. Whereas achievement of high school students was higher in stoichiometry, that of middle school students who were expected to go to high schools was higher in gas laws and diffusion. When students' achievement was compared to that of American college students, Korean students' achievement was higher in stoichiometry and was similar in gas laws. These results indicate that algorithmic problem solving is more emphasized than conceptual understanding in high schools and that quantitative aspects focused in chemistry education are not helpful in concept understanding. Nevertheless relatively smaller difference between concept understanding and algorithmic problem solving for high school students in this study seems to be from concept learning in middle schools.

  • PDF

A Study on the Effect of the $CO_2$ Gas on the Growth Mechanism of the Nitrocarburized Layer (연질화층의 성장기구에 미치는 $CO_2$가스의 영향에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.25
    • /
    • pp.175-184
    • /
    • 1995
  • Mechanical properties of the gas nitrocarburized product depend on the surface compound layer and the diffusion zone formed. The compound layer improves the wear resistance, and the corrosion resistance. Though phase composition, pore layer and growth rate of the compound layer varies according to the treatment time, temperature and the kind of the steel substrate, they are strongly influenced by the environmental gas composition. In the current study, the growth behavior of the compound layer and diffusion zone of the carbon steel and the alloy steel upon nitrocarburizing treatment at $570^{\circ}C$, and the phase composition and the variation in the growth rate of the compound layer according to the variation of the gas environment which was the medium of the nitriding and carburizing reaction were investigated.

  • PDF

The Effect of the Gas Ration on the Characteristics of Plasma Nitrided SCM440 Steel (SCM440강의 플라즈마 질화특성에 미치는 가스비율의 영향)

  • 김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.712-720
    • /
    • 1998
  • The effect of H2:N2 gas ratio on the case thickness hardness and nitrides formation in the sur-face of SCM440 machine structural steel have been studied by micro-pulse plasma process. The thickness of compound layer increased with the increase of nitrogen content in the gas com-position. The maximum thickness of compound layer the maximum case depth and the maximum surface hardness were about 15.8${\mu}m$, 400${\mu}m$ and Hv765 respectively in the nitriding condition of 250Pa and 70% nitrogen content at $520^{\circ}C$ for 7hrs. Generally only nitride phases such as ${\'{\gamma}}$($Fe_4N$)$\varepsilon(Fe_2}{_3N}$ phases were detected in compound and diffusion layer by XRD analysis. The amount of $\varepsilon(Fe_2}{_3N}$ phase increased with the increase of nitrogen content. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitrogen content in the gas composition.

  • PDF

A study on the development of the high efficiency condensing heat exchanger (고효율 응축형 열교환기 개발에 관한 연구)

  • Lee, Geum-Bae;Park, Sang-Il;Park, Jun-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.589-601
    • /
    • 1997
  • A computer simulation program of a high efficiency condensing heat exchanger is developed. The flue gas flows outside bare tube bundles both in strong cross flow and in weak counter flow and the cooling water inside the tubes. Condensing heat exchangers achieve high efficiency by reducing flue-gas temperatures to a level at which most of the water vapor in the flue gas is condensed and the latent heat associated with phase change of the water is recovered. The computer model has been verified by comparison with measured data. To verify the model, heat transfer coefficient was adjusted, along with the mass transfer diffusion coefficient and pressure drop coefficient, to achieve agreement between predicted and measured data. The efficiencies of heat exchanger increase 2.3 ~ 8.1% by condensations of 6.3 ~ 62.6% of the water vapor in the flue gas.