• 제목/요약/키워드: gas detonation forming

검색결과 2건 처리시간 0.013초

Effect of gas detonation on response of circular plate-experimental and theoretical

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Sadraei, Seyed Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.535-548
    • /
    • 2015
  • A series of experimental results on thin mild steel plates clamped at the boundary subjected to gas detonation shock loading are presented. Detonation occurred by mixing Acetylene (C2H2)-Oxygen (O2) in various volume ratio and different initial pressure. The applied impulse is varied to give deformation in the range from 6 mm to 35 mm. Analytical modeling using energy method was also performed. Dependent material properties, as well as strain rate sensitivity, are included in the theoretical modeling. Prediction values for midpoint deflections are compared with experimental data. The analytical predictions have good agreement with experimental values. Moreover, it has been shown that the obtained model has much less error compared with those previously proposed in the literature.

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.