• 제목/요약/키워드: gas cooling

검색결과 1,095건 처리시간 0.026초

냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구 (Thermal managing effects by cooling channels on performance of a PEMFC)

  • 손영준;김민진;박구곤;김경연;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

액체 수소를 활용한 극저온 부품의 냉각 과정에서 발생하는 BOG에 관한 이론적 연구 (A Theoretical Study on Boil-off Gas Generated from Cooling Process for Cryogenic Components Using Liquid Hydrogen)

  • 하동우;노현우;서영민;구태형;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.615-622
    • /
    • 2023
  • In this study, the theoretical analysis focused on the quantity of liquid hydrogen required for cooling down to 20 K, as well as the generation of boil-off gas (BOG) from the cooling process of the cryogenic components. The study involved calculating the amount of liquid hydrogen needed to achieve the desired temperature for the cryogenic components and subsequently determining the resulting BOG production at various reference temperatures. It was shown that it was important to efficiently lower the temperature of cryogenic parts through preliminary cooling. As a result, the reference temperature and pressure had an influence on the BOG generation on the cooling of cryogenic components using liquid hydrogen.

Feasibility of using biogas in a micro turbine for supplying heating, cooling and electricity for a small rural building

  • Rajaei, Gh.;Atabi, F.;Ehyaei, M.A.
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.129-145
    • /
    • 2017
  • In this study, the use of a micro gas turbine system using biogas to supply heating, cooling and electricity loads of a rural building located in rural area around Tehran has been studied. Initially, the amount of energy needed by the farmhouse was calculated and then the number of needed microturbines was determined. Accordingly, the amount of substances entering biogas digester as well as tank volume were determined. The results of this study showed that village house loads including electrical, heating and cooling and hot water loads can be supplied by using a microturbine with a nominal power of 30 kW and $33.5m^3/day$ of biogas. Digester tank and reservoir tank volumes are $67m^3$ and $31.2m^3$, respectively. The cost of electricity produced by this system is 0.446 US$/kWh. For rural area in Iran, this system is not compatible with micro gas turbine and IC engine system use urban natural gas due to low price of natural gas in Iran, but it can be compatible by wind turbine, photovoltaic and hybrid system (wind turbine& photovoltaic) systems.

대형병원 건물에 마이크로 가스터빈 적용을 위한 에너지성능 및 경제성 평가 (The Energy Performance & Economy Efficiency Evaluation of Micro Gas Turbine Installed in Hospital)

  • 김병수;홍원표
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.8-13
    • /
    • 2009
  • Feasibilities of the application of a micro gas turbine cogeneration system to a large size hospital building are studied by estimating energy demands and supplies. The energy demand for electricity is estimated by surveying and sorting the consumption records for various equipment and devices. The cooling heating, and hot water demands are further refined with TRNSYS and ESP-r to generate load profiles for the subsequent operation simulations. The operation of the suggested cogeneration system in conjunction with the load data is simulated for a time span of a year to predict energy consumption and gain profile. The simulation revealed that the thermal efficiency of the gas turbine is about 30% and it supplies 60% of the electricity required by the building. The recovered heat can meet 56% of total heating load and 67% of cooling, and the combined efficiency reaches up to 70%.

가스터빈 및 램제트의 고온 부품 열설계 기술 (Thermal Design of Hot Components in the Gas Turbine and Ram Jet)

  • 조형희
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.437-438
    • /
    • 2008
  • 가스터빈 및 램제트의 효율 향상 및 허용수명과 안정성 확보를 위해서는 고온부품에 대한 효과적인 냉각기술개발이 필수적이다. 냉각시스템을 설계하기 위해서는 다양한 냉각방식에 대한 기초적인 연구뿐만 아니라, 이에 대한 이해를 기반으로 실제 조건에 대한 치밀한 해석이 필요하다. 실험 및 해석 결과를 토대로 열적 응력 및 예상 수명을 예측 할 수 있다. 이와 같은 일련의 설계 작업을 열설계 기술이라 하며, 열설계 기술은 가스터빈 및 램제트의 성능 향상은 물론 독자적인 설계 및 개발을 위해 필요한 핵심 요소설계기술 중 하나이다.

  • PDF

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

30kVA 초전도발전기의 회전자 개발과 냉각 특성 (Development and Cooling Properties of 30kVA Superconducting Rotor)

  • 손명환;권영길;백승규;고락길;이언용;하동우;조영식;김경한;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.142-145
    • /
    • 1999
  • For the first time in Korea, a 30kVA superconducting generator has been designed, developed and successfully tested recently. This is the forerunner of a 1MVA superconducting generator which is currently under development. The paper discusses the design, development and cooling experience of a superconducting rotor. This has 3 passages of the recovered Helium gas and a gas flow control system.

  • PDF

나선형 내부전극을 사용한 2중 원통형 오존발생기의 온도의존특성 (Temperature Dependence Characteristics of Double Cylindrical Type Ozonizer Using Spiral Type Internal Electrode)

  • 전병준;이상근;;이동헌;박원주;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2004-2006
    • /
    • 1999
  • In this paper, double Cylindrical type ozonizer has been designed and manufactured to improve ozone yield by cooling external electrode. The ozonizer equipped with three electrodes ( central, internal and external electrodes ). Discharge and ozone characteristics are described in this paper by varying the flow rate( Q ) of oxygen supplied gas, temperature of cooling gas and supplied voltage.

  • PDF

플라즈마 방식 열분해 가스화용융시설의 공정별 클로로벤젠 및 클로로페놀 배출거동에 관한 연구 (A Study on the Chlorobenzene and Chlorophenol Behavior in Plasma Type Pyrolysis/Gasfication/Melting Process)

  • 신찬기;신대윤;김기헌;손지환
    • 환경위생공학
    • /
    • 제22권2호
    • /
    • pp.9-20
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and were mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasification/melting process is presented as an alternative of incineration process. The pyrolysis/gasification/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, t is investigated that the behavior of chlorobenzenes and chlorophenols in plasma type pyrolysis/gasification/melting plant of pilot scale. We investigated discharging behavior of each phase of chlorobenzene through each process in the plsasma type pyrolysis/gasification/melting process. From this result, it was found that about 99 percent of particle-phase chlorobenzene was removed, but on the other hand gas-phase chlorobenzene was increased by about 600 percent through heat exchanger, flue gas cooling, system and semi dry absorption bag filter(SDA/BF). Also, this investigation presented that di-chlorobenzene(DCB) tri-chlorobenzene(TCB), tetra-chlorobenzene(TeCB), penta-chlorobenzene (PCB), except mono-chlorobenzene(MCB) and hexa-chlorobenzene(HCB) were increased through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). It was investigated that concentration of particle-phase chlorophenol was decreased by about 66 percent, but on the other hand, concentration of gas-phase chlorophenol was increased by about 170 percent through heat exchanger, flue gas cooling system, and semi dry absorption bag filter(SDA/BF). Also, it was found that di-chlorophenol(DCP), tri-chlorophenol(TCP), and penta-chlorophenol(PCP) were increased through the flue gas cooling system, and the semi dry absorption bag filter(SDA/BF). It can be considered that small-scale pilot facility and short investigation period might cause the concentration increase through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). A further study on real-scale pilot facility and accurate investigation may be required.