• Title/Summary/Keyword: gas cooling

Search Result 1,090, Processing Time 0.028 seconds

Measurement of Radiative Heat Flux of Nozzle Exit (노즐 후방부의 Radiative Heat Flux 측정)

  • An, Won Geun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.87-92
    • /
    • 2003
  • In rocket systems, somtimes special devices or equipments are installed near the nozzle exit area where high temperature and pressure combustion gas flows. To pretect these subsystems from severe thermal environment, it is necessary to have accurate thermal data measured from the experimental liquid rocket firing test. Test variables were combustion pressure (200, 300, 400 psi) and mixture ratio (1.5, 2.0, 2.5) and quartz was used as a heat probe. Measurement technique used in this research can be also applied to measure the radiative heat flux inside the combustion chamber which is important imput data for the liquid rocket regenerative cooling system design.

A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials (일방향 응고 재료의 결정립 성장 방향 섭동이 고압터빈 노즐 저주기 피로 수명에 미치는 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.653-658
    • /
    • 2016
  • High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

Far-ultraviolet study of the GSH006-15+7: A local Galactic supershell

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2014
  • GSH 006-15+7 is a Milky Way supershell discovered by Moss et al. (2012). This supershell shows large shell-like structures in H I velocity maps. We have analyzed FUV emission for the supershell regions based on the FIMS and GALEX observations. Bright FUV flux at the boundaries of the supershell is mostly originated from dust scattering of FUV photons by dust clouds which was also observed at the boundaries of the supershell. We could find the distance to the supershell can be closer more than 30% compared with the distance of 1500 pc suggested by Moss et al. (2012) from the dust scattering simulation. And we also found the albedo and the phase function asymmetry factor of interstellar grains were 0.30 and 0.40, respectively. The confidence range for the albedo covers the theoretical value of 0.40, but g-factor is rather smaller than the theoretical value of 0.65. The small g-factor might mean the environment of turbulent ISM of the supershell. Meanwhile, the excess of C IV and X-ray emissions in the inside of the supershell can support the existence of hot gas and cooling in the supershell. And the C IV and X-ray emissions are monotonically decrease as away from the center of the SNR. This indicates the size of the hot bubble has considerably shrunk. We applied a simple simulation model to the PDR candidate region of the lower part of the supershell and obtained a H2 column density N(H2) = 1017.0-18.0 cm-2 and total hydrogen density nH ${\geq}$ 10 cm-3. This result shows the PDR candidate region represents a transition region from the warm phase to the cool phase in the PDR.

  • PDF

An Analysis on the Characteristics of Energy and Water Consumption in Urban Rental Apartment (도심 임대아파트의 에너지 및 상수 소비 특성에 관한 연구)

  • Seo, Youn-Kyu;Kim, Ju-Young;Hong, Won-Hwa
    • Journal of the Korean housing association
    • /
    • v.20 no.6
    • /
    • pp.39-46
    • /
    • 2009
  • It has been a serious problem to consume the energy of apartment while increasing to use of heating & cooling System because of residence environmental upgrades. Great attention has been shown to the problem of the rental apartment, so there are few reports of energy consumption about the rental apartment in korea. To solve the lack of housing, our country has supplied an enormous volume of apartments, and these days it occupies 75% of our buildings. As apartments occupy most of our housings, the rate of energy usage from them are also high. On this, setting apartment energy reduction as a target, by researching the actual conditions of energy consumption and drawing a basis data, we can apply this as a way of saving energy, rationalization of the scale of energy supply facilities and a standard when planning facilities. To grasp the present condition of energy usage of the urban rental apartment, this research analysed the use of electricity, gas and water monthly and annually of a rental apartment that is located in Daegu. The results showed that in 2003 the electricity usage was 1,198MWh but 1,315MWh in 2007, which means 9% of electricity usage increases every year. The average of water usage was $85,072\;m^2$ per year and typical energy consumption unit was $604.2\;MJ/m^2$ on $74.4\;m^2$ of area and $448.8\;MJ/m^2$ on $105.8\;M^2$. By showing the usage of energy and water of the urban rental apartment, understanding the tendency and preparing an typical energy consumption unit standard through this research, apartments should use energy more efficiently.

Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV) (무인항공기용 150W급 연료전지 동력원 개발 및 실증)

  • Yang, Cheol-Nam;Kim, Yang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Long endurance is a key issue in the application of unmanned aerial vehicles. This study presents feasibility test results when fuel cell system as an alternative to the conventional engine is applied for the power of the UAV after the 150W fuel cell system is developed and packaged to the 1/4 scale super cub airplane. Fuel cell system is operated by dead-end method in the anode part and periodically purged to remove the water droplet in flow field during the operation. Oxygen in the air is supplied to the stack by the two air blowers. And fuel cell stack is water cooled by cooling circuit to dissipate the heat generated during the fuel cell operation. Weight balance is considered to integrate the stack and balance of plant (BOP) in package layout. In flight performance test, we demonstrated 4 times standalone take-off and landing. In the laboratory test simulating the flight condition to quantify the energy flow, the system is analyzed in detail. Sankey diagram shows that electric efficiency of the fuel cell system is 39.2%, heat loss 50.1%, parasitic loss 8.96%, and unreacted purged gas 1.67%, respectively compared to the total hydrogen input energy. Feasibility test results show that fuel cell system is high efficient and appropriate for the power of UAV.

FUV spectral images of the Orion-Eridanus Superbubble region

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il;Edelstein, Jerry;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • The far-ultraviolet (FUV) continuum and spectral images of C IV and H2 emission lines for the region of Orion-Eridanus Superbubble (OES) are hereby presented and compared with the maps obtained in other wavelengths. While the region shows complex structures, consisting of hot gases and cold dust, a close examination reveals that the FUV emission in this region can be understood reasonably as the result of their interactions. We confirm the origin of most diffuse FUV continuum to be starlight scattered by dust, but we also find that the ionized gas also contributes 50-70% of the total FUV intensity in the regions of H_alpha arcs. We note the bright diffuse FUV continuum in the eastern part of the northern dust-rich region, and attribute it to the bright early-type stars more abundant in this region than in the west as the amount of dust itself does not seem to be much different across 'arc A' that separates the two regions. In addition, two P Cygni-type stars are identified in this eastern region and their peculiar spectral profiles around the C IV emission line are anifested in the scattered diffuse spectrum. Besides this, the C IV emission is generally enhanced at the boundaries of the hot X-ray cavities where thin dust regions are located, confirming the thermal interface nature of the origin of this cooling emission line. The morphology of the H2 emission shows a general correlation with dust extinction features but its intensity peaks are rather located in thin dust areas, off the peak dust regions. Furthermore, H2 emission is seen to be weak in the arc A region though the arc passes through the center of the dust-rich area. Hence, the H2 emission and dust features, together with those of X-ray and ion lines emissions, show stratified structure of arc A quite well, again confirming its thermal interface nature.

  • PDF

Analysis on the Energy Balance and Performance Variation of the Power Plant by using the Heavy Residual Oil (중질잔사유 적용시 발전플랜트의 에너지 수지 및 성능 변화 분석)

  • Park, Ho-Young;Kim, Tae-Hyung
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-115
    • /
    • 2008
  • The numerical analysis of energy and material balance, and plant performance has been carried out when applying the heavy residual oil instead of heavy oil to the existing heavy oil power station. The performance analysis model has been constructed for A heavy oil power station in Korea, and the modeling results were compared with the design data in order to ensure the validity of the model, and further compared with the plant operation data. With the heavy residual oil, the simulation gave 315 MW in power output, which is higher than that of the heavy oil combustion, but the plant efficiency turned out to be lower. The sensitivity analysis of heat rate for the changes in cooling water and ambient temperature, flue gas recirculation and power output has provided valuable information for the optimal operation of the power station.

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I) (주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1))

  • Kuk, Keon;Lee, Joon-Sik;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.